Venkat V commited on
Commit
c2717d6
·
1 Parent(s): 8896007

changed to use gpu if applicable

Browse files
device_config.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # device_config.py
2
+ import torch
3
+
4
+ def get_device():
5
+ if torch.cuda.is_available():
6
+ return "cuda"
7
+ elif torch.backends.mps.is_available():
8
+ return "mps" # For Apple Silicon
9
+ else:
10
+ return "cpu"
ocr_module/__init__.py CHANGED
@@ -5,9 +5,13 @@ import cv2
5
  import torch
6
  from textblob import TextBlob
7
 
 
 
 
8
  # Enable GPU if available
9
- use_gpu = torch.cuda.is_available()
10
- reader = easyocr.Reader(['en'], gpu=use_gpu)
 
11
 
12
  def expand_bbox(bbox, image_size, pad=10):
13
  x1, y1, x2, y2 = bbox
 
5
  import torch
6
  from textblob import TextBlob
7
 
8
+ from device_config import get_device
9
+ device = get_device()
10
+
11
  # Enable GPU if available
12
+ reader = easyocr.Reader(['en'], gpu=(device == "cuda"))
13
+ print(f"✅ EasyOCR reader initialized on: {device}")
14
+
15
 
16
  def expand_bbox(bbox, image_size, pad=10):
17
  x1, y1, x2, y2 = bbox
summarizer_module/__init__.py CHANGED
@@ -1,12 +1,16 @@
1
  # summarizer_module/__init__.py
2
 
3
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
 
 
 
 
4
 
5
  # Use a small local model (e.g., Phi-2)
6
  MODEL_ID = "microsoft/phi-2" # Ensure it's downloaded and cached locally
7
 
8
  # Load model and tokenizer
9
- model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
10
  tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
11
  summarizer = pipeline("text-generation", model=model, tokenizer=tokenizer)
12
 
 
1
  # summarizer_module/__init__.py
2
 
3
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
4
+ from device_config import get_device
5
+ import torch
6
+
7
+ device = get_device()
8
 
9
  # Use a small local model (e.g., Phi-2)
10
  MODEL_ID = "microsoft/phi-2" # Ensure it's downloaded and cached locally
11
 
12
  # Load model and tokenizer
13
+ model = AutoModelForCausalLM.from_pretrained(MODEL_ID).to(device)
14
  tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
15
  summarizer = pipeline("text-generation", model=model, tokenizer=tokenizer)
16
 
yolo_module/__init__.py CHANGED
@@ -1,12 +1,15 @@
1
  # yolo_module.py
2
  from ultralytics import YOLO
 
3
  from PIL import Image, ImageDraw
4
  import numpy as np
5
  import easyocr
6
 
7
  # Load YOLO model
8
  MODEL_PATH = "models/best.pt"
9
- model = YOLO(MODEL_PATH)
 
 
10
 
11
  # Optional OCR reader for arrow label detection
12
  reader = easyocr.Reader(['en'], gpu=False)
 
1
  # yolo_module.py
2
  from ultralytics import YOLO
3
+ from device_config import get_device
4
  from PIL import Image, ImageDraw
5
  import numpy as np
6
  import easyocr
7
 
8
  # Load YOLO model
9
  MODEL_PATH = "models/best.pt"
10
+ model = YOLO(MODEL_PATH).to(device)
11
+ print(f"✅ YOLO model loaded on: {device}")
12
+
13
 
14
  # Optional OCR reader for arrow label detection
15
  reader = easyocr.Reader(['en'], gpu=False)