Venkat V
UPDATED changes to streamlit, ocr
928873d
raw
history blame
3 kB
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
import uvicorn
from PIL import Image
import io
import json
import base64
# Import pipeline modules
from yolo_module import run_yolo
from ocr_module import extract_text, count_elements, validate_structure
from graph_module import map_arrows, build_flowchart_json
from summarizer_module import summarize_flowchart
app = FastAPI()
# Allow Streamlit access
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/process-image")
async def process_image(file: UploadFile = File(...), debug: str = Form("false")):
debug_mode = debug.lower() == "true"
debug_log = []
if debug_mode:
debug_log.append("๐Ÿ“ฅ Received file: file")
print("๐Ÿ“ฅ Received file:", file.filename)
contents = await file.read()
image = Image.open(io.BytesIO(contents)).convert("RGB")
if debug_mode:
debug_log.append("โœ… Image loaded and converted to RGB")
print("โœ… Image loaded and converted to RGB")
# ๐Ÿ” Run YOLO
boxes, arrows, vis_debug = run_yolo(image)
if debug_mode:
debug_log.append(f"๐Ÿ“ฆ YOLO detected {len(boxes)} boxes and {len(arrows)} arrows")
# ๐Ÿ” Run OCR
for box in boxes:
box["text"] = extract_text(image, box["bbox"], debug=debug_mode)
if debug_mode:
debug_log.append(f"๐Ÿ” OCR text for box {box['id']}: {box['text']}")
print(f"๐Ÿ” OCR text for box {box['id']}: {box['text']}")
# ๐Ÿ”— Map arrows and build graph
edges = map_arrows(boxes, arrows)
if debug_mode:
debug_log.append(f"๐Ÿงญ Mapped {len(edges)} edges from arrows to boxes")
flowchart_json = build_flowchart_json(boxes, edges)
print("๐Ÿง  Flowchart JSON structure:")
print(json.dumps(flowchart_json, indent=2))
# ๐Ÿงฎ Validate and count
structure_info = count_elements(boxes, arrows, debug=debug_mode)
validation = validate_structure(flowchart_json, expected_boxes=structure_info["box_count"], expected_arrows=len(arrows), debug=debug_mode)
if debug_mode:
debug_log.append(f"๐Ÿงพ Validation: {validation}")
# ๐Ÿ“ Summarize
summary = summarize_flowchart(flowchart_json)
print("๐Ÿ“ Generated English summary:")
print(summary)
# Optional: encode vis_debug for streamlit
yolo_vis = None
if debug_mode and vis_debug:
vis_io = io.BytesIO()
vis_debug.save(vis_io, format="PNG")
vis_io.seek(0)
yolo_vis = base64.b64encode(vis_io.read()).decode("utf-8")
return JSONResponse({
"flowchart": flowchart_json,
"summary": summary,
"yolo_vis": yolo_vis, # โœ… key must match what Streamlit expects
"debug": "\n".join(debug_log) if debug_mode else ""
})
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)