forrestbao commited on
Commit
9bd9faa
·
1 Parent(s): a80a32b

update title of the app

Browse files
Files changed (1) hide show
  1. app.py +7 -2
app.py CHANGED
@@ -5,15 +5,20 @@
5
  from typing import List, Literal
6
  from IPython.display import display, Markdown
7
  from transformers import AutoModelForSequenceClassification
 
8
 
9
  hhem = AutoModelForSequenceClassification.from_pretrained('vectara/hallucination_evaluation_model', trust_remote_code=True)
10
 
 
 
 
 
 
11
  def HHEM(
12
  LLM_Prompt: str = "The sky is blue.",
13
  LLM_Response: str = "The ocean is blue."
14
  ) -> Markdown:
15
- """# GUI demo for Vectara's HHEM-2.1-Open
16
-
17
  Vectara's Hughes Hallucination Evaluation Model (HHEM) evaluates how well an LLM's output (called the "response" or the "hypothesis") is faithful/grounded to or supported by the input given to it (called the "prompt" or the "premise"). HHEM has two versions: [HHEM-Open](https://huggingface.co/vectara/hallucination_evaluation_model) and [HHEM Commercial](https://www.vectara.com/blog/hhem-2-1-a-better-hallucination-detection-model).
18
 
19
  To use the demo, fill in the "LLM_Prompt" and "LLM_Response" fields and click the run button. A placeholder example is prefilled for you. Feel free to replace it with your own examples and evaluate them.
 
5
  from typing import List, Literal
6
  from IPython.display import display, Markdown
7
  from transformers import AutoModelForSequenceClassification
8
+ from funix import funix
9
 
10
  hhem = AutoModelForSequenceClassification.from_pretrained('vectara/hallucination_evaluation_model', trust_remote_code=True)
11
 
12
+ print ("Loading HHEM, this may take a while.")
13
+
14
+ @funix(
15
+ title= "GUI demo for Vectara's HHEM-2.1-Open"
16
+ )
17
  def HHEM(
18
  LLM_Prompt: str = "The sky is blue.",
19
  LLM_Response: str = "The ocean is blue."
20
  ) -> Markdown:
21
+ """
 
22
  Vectara's Hughes Hallucination Evaluation Model (HHEM) evaluates how well an LLM's output (called the "response" or the "hypothesis") is faithful/grounded to or supported by the input given to it (called the "prompt" or the "premise"). HHEM has two versions: [HHEM-Open](https://huggingface.co/vectara/hallucination_evaluation_model) and [HHEM Commercial](https://www.vectara.com/blog/hhem-2-1-a-better-hallucination-detection-model).
23
 
24
  To use the demo, fill in the "LLM_Prompt" and "LLM_Response" fields and click the run button. A placeholder example is prefilled for you. Feel free to replace it with your own examples and evaluate them.