varalakshmi55 commited on
Commit
1911e3b
Β·
verified Β·
1 Parent(s): ea9f040

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -0
app.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from Utility.data_loader import (
4
+ load_train_series, load_train_events,
5
+ load_sample_submission, load_test_series
6
+ )
7
+
8
+ st.set_page_config(page_title="Sleep Detection", layout="wide")
9
+ st.title("Sleep Detection")
10
+
11
+ st.markdown("""
12
+ ### πŸ“Š About the App
13
+
14
+ This **Sleep Detection App** uses sensor data collected over time to predict sleep-related events such as *onset* or *wake-up*. The application allows users to analyze sleep patterns based on movement data and provides predictions using a machine learning model trained on labeled sensor events.
15
+
16
+ ---
17
+
18
+ ### 🧾 Data Description
19
+
20
+ Each row in the dataset represents a time-stamped sensor reading with the following key columns:
21
+
22
+ - **series_id**: Unique identifier for a sleep session or user.
23
+ - **step**: Sequence number of the reading.
24
+ - **sensor_timestamp**: The time when the sensor reading was recorded.
25
+ - **anglez**: Z-axis body orientation angle (used as a feature).
26
+ - **enmo**: Euclidean Norm Minus One – a movement magnitude metric (used as a feature).
27
+ - **night**: Night identifier (used to separate sessions).
28
+ - **event**: The sleep-related label (e.g., `onset`, `wake`) indicating the event type.
29
+ - **event_timestamp**: Timestamp of the actual sleep event (used to calculate sleep duration).
30
+
31
+ ---
32
+
33
+ ### πŸ€– App Capabilities
34
+
35
+ - Displays raw sensor data and sleep event counts.
36
+ - Trains an ML model (XGBoost) using movement features (`anglez`, `enmo`) to predict sleep events.
37
+ - Allows real-time prediction of sleep events based on user input.
38
+ - Displays evaluation metrics: **Accuracy**, **F1 Score**, **ROC AUC Score**.
39
+
40
+ ---
41
+ """)
42
+
43
+
44
+
45
+ # --- Sidebar Radio Button ---
46
+ st.header("Select Dataset to View")
47
+ option = st.radio(
48
+ "Choose a dataset:",
49
+ ("Train Events","Train Series", "Test Series", "Summary")
50
+ )
51
+
52
+ # --- Load and Show Data Based on Selection ---
53
+ df = None
54
+
55
+ if option == "Train Events":
56
+ df = load_train_events()
57
+ st.subheader("Train Events")
58
+ st.dataframe(df.head())
59
+
60
+ elif option == "Sample Submission":
61
+ df = load_sample_submission()
62
+ st.subheader("Sample Submission")
63
+ st.dataframe(df.head())
64
+
65
+ elif option == "Train Series":
66
+ df = load_train_series()
67
+ st.subheader("Train Series (1M rows sample)")
68
+ st.dataframe(df.head())
69
+
70
+ elif option == "Test Series":
71
+ df = load_test_series()
72
+ st.subheader("Test Series")
73
+ st.dataframe(df.head())
74
+
75
+ elif option == "Summary":
76
+ st.subheader("Summary of All Key Datasets")
77
+
78
+ with st.expander("πŸ“„ Train Events"):
79
+ df_events = load_train_events()
80
+ st.dataframe(df_events.head())
81
+ st.write("Summary:")
82
+ st.dataframe(df_events.describe(include="all"))
83
+
84
+ with st.expander("πŸ“„ Sample Submission"):
85
+ df_sample = load_sample_submission()
86
+ st.dataframe(df_sample.head())
87
+ st.write("Summary:")
88
+ st.dataframe(df_sample.describe(include="all"))
89
+
90
+ with st.expander("πŸ“„ Train Series"):
91
+ df_series = load_train_series()
92
+ st.dataframe(df_series.head())
93
+ st.write("Summary:")
94
+ st.dataframe(df_series.describe())
95
+
96
+ with st.expander("πŸ“„ Test Series"):
97
+ df_test = load_test_series()
98
+ st.dataframe(df_test.head())
99
+ st.write("Summary:")
100
+ st.dataframe(df_test.describe())
101
+