File size: 7,307 Bytes
ea9f040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# app.py
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score
from xgboost import XGBClassifier
st.title("๐ง Sleep Event Prediction")
# --- Load and preprocess data ---
merged_df = pd.read_csv("merged_df.csv")
st.subheader("Raw Data Sample")
st.dataframe(merged_df.head())
# Drop nulls in important columns
merged_df = merged_df.dropna(subset=['night', 'event', 'event_timestamp'])
# Convert timestamps
merged_df['event_timestamp'] = pd.to_datetime(merged_df['event_timestamp'], format='%Y-%m-%dT%H:%M:%S%z', utc=True)
merged_df['sensor_timestamp'] = pd.to_datetime(merged_df['sensor_timestamp'], format='%Y-%m-%dT%H:%M:%S%z', utc=True)
# Calculate duration
merged_df['sleep_duration_hrs'] = (merged_df['sensor_timestamp'] - merged_df['event_timestamp']).dt.total_seconds() / 3600
# Encode categorical columns
le_event = LabelEncoder()
merged_df['event_encoded'] = le_event.fit_transform(merged_df['event'])
le_series = LabelEncoder()
merged_df['series_id_encoded'] = le_series.fit_transform(merged_df['series_id'])
# Select features
X = merged_df[['anglez', 'enmo']]
y = merged_df['event_encoded']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Scale features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train model
model = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
model.fit(X_train_scaled, y_train)
# Evaluate model
y_pred = model.predict(X_test_scaled)
y_proba = model.predict_proba(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred, average='macro')
# Handle binary or multiclass AUC
if y_proba.shape[1] == 2:
roc = roc_auc_score(y_test, y_proba[:, 1])
else:
roc = roc_auc_score(y_test, y_proba, multi_class='ovo', average='macro')
# --- Predict User Input ---
st.subheader("๐ฎ Predict Sleep Event")
anglez = st.number_input("Enter anglez:", value=27.88, format="%.4f")
enmo = st.number_input("Enter enmo:", value=0.00, format="%.4f")
if st.button("Predict Sleep Event"):
input_data = np.array([[anglez, enmo]])
input_scaled = scaler.transform(input_data)
prediction = model.predict(input_scaled)[0]
predicted_label = le_event.inverse_transform([prediction])[0]
st.success(f"Predicted Sleep Event: {predicted_label}")
# # app.py (your Streamlit file)
# import streamlit as st
# import numpy as np
# # import pickle
# from sklearn.metrics import accuracy_score, f1_score, roc_auc_score
# import pandas as pd
# from sklearn.preprocessing import LabelEncoder,StandardScaler
# from sklearn.model_selection import train_test_split
# from xgboost import XGBClassifier
# st.title("๐ง Sleep Event Prediction")
# # --- Load Pickles ---
# # @st.cache_resource
# # def load_all():
# # with open("model.pkl", "rb") as f: model = pickle.load(f)
# # with open("scaler.pkl", "rb") as f: scaler = pickle.load(f)
# # with open("label_encoder.pkl", "rb") as f: le = pickle.load(f)
# # with open("X_test.pkl", "rb") as f: X_test = pickle.load(f)
# # with open("y_test.pkl", "rb") as f: y_test = pickle.load(f)
# # return model, scaler, le, X_test, y_test
# merged_df=pd.read_csv("merged_df.csv")
# st.dataframe(merged_df.head())
# # Step 1: Drop rows with nulls in key columns
# merged_df = merged_df.dropna(subset=['night', 'event', 'event_timestamp'])
# # Step 2: Reset index (also avoid inplace)
# merged_df = merged_df.reset_index(drop=True)
# merged_df['event_timestamp'] = pd.to_datetime(merged_df['event_timestamp'], format='%Y-%m-%dT%H:%M:%S%z',utc=True)
# merged_df['sensor_timestamp'] = pd.to_datetime(merged_df['sensor_timestamp'], format='%Y-%m-%dT%H:%M:%S%z',utc=True)
# merged_df['sleep_duration_hrs'] = (merged_df['sensor_timestamp'] - merged_df['event_timestamp']).dt.total_seconds() / 3600
# le = LabelEncoder()
# merged_df['series_id'] = le.fit_transform(merged_df['series_id'])
# merged_df['event'] = le.fit_transform(merged_df['event']) # Target label
# # columns_to_drop = ['sensor_timestamp', 'series_id', 'event_timestamp','night','sleep_duration_hrs','step']
# # Drop specified columns and define features (X) and target (y)
# # df_cleaned = merged_df.drop([col for col in columns_to_drop if col in merged_df.columns], axis=1)
# # X = df_cleaned.drop('event', axis=1)
# # y = df_cleaned['event']
# X = merged_df[['anglez', 'enmo']]
# y = merged_df['event']
# # Train-test split
# X_train, X_test, y_train, y_test = train_test_split(
# X, y, test_size=0.2
# )
# # 6. Scale features (optional for XGBoost but good practice)
# scaler = StandardScaler()
# X_train_scaled = scaler.fit_transform(X_train)
# X_test_scaled = scaler.transform(X_test)
# # 7. Train XGBoost model
# # model = XGBClassifier(n_estimators=100, max_depth=3, learning_rate=0.1, reg_alpha=1, reg_lambda=1, eval_metric='logloss')
# model = XGBClassifier()
# model.fit(X_train_scaled, y_train)
# # 8. Predict and Evaluate
# y_pred = model.predict(X_test_scaled)
# y_proba = model.predict_proba(X_test_scaled)
# accuracy = accuracy_score(y_test, y_pred)
# f1 = f1_score(y_test, y_pred, average='macro')
# if y_proba.shape[1] == 2:
# roc = roc_auc_score(y_test, y_proba[:, 1])
# else:
# roc = roc_auc_score(y_test, y_proba, multi_class='ovo', average='macro')
# # --- Display Metrics ---
# # st.subheader("Model Performance")
# # st.metric("Accuracy", f"{accuracy:.4f}")
# # st.metric("F1 Score", f"{f1:.4f}")
# # st.metric("ROC AUC Score", f"{roc:.4f}")
# # Create a DataFrame for metrics
# # import pandas as pd
# st.subheader("Model Performance")
# # Create a DataFrame for metrics
# metrics_df = pd.DataFrame({
# "Metric": ["Accuracy", "F1 Score", "ROC AUC Score"],
# "Value": [f"{accuracy:.4f}", f"{f1:.4f}", f"{roc:.4f}"]
# })
# # Display as table
# st.table(metrics_df)
# counts = merged_df["event"].value_counts()
# st.markdown("**Event Value Counts:**")
# st.markdown(counts.to_string())
# # --- Predict User Input ---
# st.subheader("Predict Sleep Event")
# anglez = st.number_input("Enter anglez:", value=27.8800,format="%.4f")
# enmo = st.number_input("Enter enmo:", value=0.0000,format="%.4f")
# if st.button("Predict Sleep Event"):
# input_data = np.array([[anglez, enmo]])
# input_scaled = scaler.transform(input_data)
# prediction = model.predict(input_scaled)[0]
# label = le.inverse_transform([prediction])[0]
# st.success(f"Predicted Event: {label}")
# Display class balance
# Display metrics
st.subheader("๐ Model Performance")
metrics_df = pd.DataFrame({
"Metric": ["Accuracy", "F1 Score", "ROC AUC Score"],
"Value": [f"{accuracy:.4f}", f"{f1:.4f}", f"{roc:.4f}"]
})
st.table(metrics_df)
st.subheader("๐ Event Value Counts")
value_counts_df = merged_df["event"].value_counts().reset_index()
value_counts_df.columns = ["Event", "Count"]
st.dataframe(value_counts_df) |