File size: 7,307 Bytes
ea9f040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# app.py
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score
from xgboost import XGBClassifier


st.title("๐Ÿง  Sleep Event Prediction")

# --- Load and preprocess data ---
merged_df = pd.read_csv("merged_df.csv")
st.subheader("Raw Data Sample")
st.dataframe(merged_df.head())

# Drop nulls in important columns
merged_df = merged_df.dropna(subset=['night', 'event', 'event_timestamp'])

# Convert timestamps
merged_df['event_timestamp'] = pd.to_datetime(merged_df['event_timestamp'], format='%Y-%m-%dT%H:%M:%S%z', utc=True)
merged_df['sensor_timestamp'] = pd.to_datetime(merged_df['sensor_timestamp'], format='%Y-%m-%dT%H:%M:%S%z', utc=True)

# Calculate duration
merged_df['sleep_duration_hrs'] = (merged_df['sensor_timestamp'] - merged_df['event_timestamp']).dt.total_seconds() / 3600

# Encode categorical columns
le_event = LabelEncoder()
merged_df['event_encoded'] = le_event.fit_transform(merged_df['event'])

le_series = LabelEncoder()
merged_df['series_id_encoded'] = le_series.fit_transform(merged_df['series_id'])

# Select features
X = merged_df[['anglez', 'enmo']]
y = merged_df['event_encoded']

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Scale features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Train model
model = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
model.fit(X_train_scaled, y_train)

# Evaluate model
y_pred = model.predict(X_test_scaled)
y_proba = model.predict_proba(X_test_scaled)

accuracy = accuracy_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred, average='macro')

# Handle binary or multiclass AUC
if y_proba.shape[1] == 2:
    roc = roc_auc_score(y_test, y_proba[:, 1])
else:
    roc = roc_auc_score(y_test, y_proba, multi_class='ovo', average='macro')




# --- Predict User Input ---
st.subheader("๐Ÿ”ฎ Predict Sleep Event")
anglez = st.number_input("Enter anglez:", value=27.88, format="%.4f")
enmo = st.number_input("Enter enmo:", value=0.00, format="%.4f")

if st.button("Predict Sleep Event"):
    input_data = np.array([[anglez, enmo]])
    input_scaled = scaler.transform(input_data)
    prediction = model.predict(input_scaled)[0]
    predicted_label = le_event.inverse_transform([prediction])[0]
    st.success(f"Predicted Sleep Event: {predicted_label}")


# # app.py (your Streamlit file)
# import streamlit as st
# import numpy as np
# # import pickle
# from sklearn.metrics import accuracy_score, f1_score, roc_auc_score
# import pandas as pd
# from sklearn.preprocessing import LabelEncoder,StandardScaler
# from sklearn.model_selection import train_test_split
# from xgboost import XGBClassifier

# st.title("๐Ÿง  Sleep Event Prediction")

# # --- Load Pickles ---
# # @st.cache_resource
# # def load_all():
# #     with open("model.pkl", "rb") as f: model = pickle.load(f)
# #     with open("scaler.pkl", "rb") as f: scaler = pickle.load(f)
# #     with open("label_encoder.pkl", "rb") as f: le = pickle.load(f)
# #     with open("X_test.pkl", "rb") as f: X_test = pickle.load(f)
# #     with open("y_test.pkl", "rb") as f: y_test = pickle.load(f)
# #     return model, scaler, le, X_test, y_test

# merged_df=pd.read_csv("merged_df.csv")
# st.dataframe(merged_df.head())
# # Step 1: Drop rows with nulls in key columns
# merged_df = merged_df.dropna(subset=['night', 'event', 'event_timestamp'])

# # Step 2: Reset index (also avoid inplace)
# merged_df = merged_df.reset_index(drop=True)
# merged_df['event_timestamp'] = pd.to_datetime(merged_df['event_timestamp'], format='%Y-%m-%dT%H:%M:%S%z',utc=True)
# merged_df['sensor_timestamp'] = pd.to_datetime(merged_df['sensor_timestamp'], format='%Y-%m-%dT%H:%M:%S%z',utc=True)
# merged_df['sleep_duration_hrs'] = (merged_df['sensor_timestamp'] - merged_df['event_timestamp']).dt.total_seconds() / 3600

# le = LabelEncoder()
# merged_df['series_id'] = le.fit_transform(merged_df['series_id'])
# merged_df['event'] = le.fit_transform(merged_df['event'])  # Target label

# # columns_to_drop = ['sensor_timestamp', 'series_id', 'event_timestamp','night','sleep_duration_hrs','step']

# # Drop specified columns and define features (X) and target (y)
# # df_cleaned = merged_df.drop([col for col in columns_to_drop if col in merged_df.columns], axis=1)

# # X = df_cleaned.drop('event', axis=1)
# # y = df_cleaned['event']

# X = merged_df[['anglez', 'enmo']]
# y = merged_df['event']

# # Train-test split
# X_train, X_test, y_train, y_test = train_test_split(
#     X, y, test_size=0.2
# )

# # 6. Scale features (optional for XGBoost but good practice)
# scaler = StandardScaler()
# X_train_scaled = scaler.fit_transform(X_train)
# X_test_scaled = scaler.transform(X_test)

# # 7. Train XGBoost model
# # model = XGBClassifier(n_estimators=100, max_depth=3, learning_rate=0.1, reg_alpha=1, reg_lambda=1, eval_metric='logloss')
# model = XGBClassifier()
# model.fit(X_train_scaled, y_train)

# # 8. Predict and Evaluate
# y_pred = model.predict(X_test_scaled)
# y_proba = model.predict_proba(X_test_scaled)

# accuracy = accuracy_score(y_test, y_pred)
# f1 = f1_score(y_test, y_pred, average='macro')

# if y_proba.shape[1] == 2:
#     roc = roc_auc_score(y_test, y_proba[:, 1])
# else:
#     roc = roc_auc_score(y_test, y_proba, multi_class='ovo', average='macro')


# # --- Display Metrics ---
# # st.subheader("Model Performance")
# # st.metric("Accuracy", f"{accuracy:.4f}")
# # st.metric("F1 Score", f"{f1:.4f}")
# # st.metric("ROC AUC Score", f"{roc:.4f}")

# # Create a DataFrame for metrics
# # import pandas as pd

# st.subheader("Model Performance")

# # Create a DataFrame for metrics
# metrics_df = pd.DataFrame({
#     "Metric": ["Accuracy", "F1 Score", "ROC AUC Score"],
#     "Value": [f"{accuracy:.4f}", f"{f1:.4f}", f"{roc:.4f}"]
# })

# # Display as table
# st.table(metrics_df)

# counts = merged_df["event"].value_counts()
# st.markdown("**Event Value Counts:**")
# st.markdown(counts.to_string())

# # --- Predict User Input ---
# st.subheader("Predict Sleep Event")
# anglez = st.number_input("Enter anglez:", value=27.8800,format="%.4f")
# enmo = st.number_input("Enter enmo:", value=0.0000,format="%.4f")

# if st.button("Predict Sleep Event"):
#     input_data = np.array([[anglez, enmo]])
#     input_scaled = scaler.transform(input_data)
#     prediction = model.predict(input_scaled)[0]
#     label = le.inverse_transform([prediction])[0]
#     st.success(f"Predicted Event: {label}")
# Display class balance

# Display metrics
st.subheader("๐Ÿ“Š Model Performance")
metrics_df = pd.DataFrame({
    "Metric": ["Accuracy", "F1 Score", "ROC AUC Score"],
    "Value": [f"{accuracy:.4f}", f"{f1:.4f}", f"{roc:.4f}"]
})
st.table(metrics_df)

st.subheader("๐Ÿ“ˆ Event Value Counts")
value_counts_df = merged_df["event"].value_counts().reset_index()
value_counts_df.columns = ["Event", "Count"]
st.dataframe(value_counts_df)