File size: 11,453 Bytes
ea9f040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import streamlit as st
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from Utility.data_loader  import load_train_series,load_train_events,load_sample_submission,load_test_series
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from xgboost import XGBClassifier  # or XGBRegressor depending on your task
import xgboost as xgb
import numpy as np

@st.cache_data
def load_sampled_data():
    # df3 = pd.read_parquet("train_series.parquet", columns=['series_id', 'step', 'anglez', 'enmo'])
    # df4 = pd.read_parquet("test_series.parquet", columns=['series_id', 'step', 'anglez', 'enmo'])
    df2 = pd.read_csv("train_events.csv")

    # Sample safely based on available data
    # df3_sample = df3.sample(n=min(5_000_000, len(df3)), random_state=42)
    # df4_sample = df4.sample(n=min(1_000_000, len(df4)), random_state=42)

    return df2

# Load
# df3, df4, df2 = load_sampled_data()
df2 = load_sampled_data()
# df = pd.concat([df3, df4], axis=0, ignore_index=True)
# merged_df = pd.merge(df, df2, on=['series_id', 'step'], how='inner')

merged_df = pd.read_csv("merged_df.csv")

# Rename timestamp columns if they exist
if 'timestamp_x' in merged_df.columns:
    merged_df.rename(columns={'timestamp_x': 'sensor_timestamp'}, inplace=True)
if 'timestamp_y' in merged_df.columns:
    merged_df.rename(columns={'timestamp_y': 'event_timestamp'}, inplace=True)

st.title("πŸ“Š Step Distribution Analysis")

# Layout: 2 columns
col1, col2 = st.columns([1, 1])  # Equal width
# ----- Column 1: Boxplot -----
with col1:
    st.subheader("πŸ“¦ Boxplot of Step")
    fig, ax = plt.subplots(figsize=(6, 4))  # Adjusted for better visibility
    sns.boxplot(x=df2['step'], ax=ax, color='steelblue')
    ax.set_title("Distribution of Step Count", fontsize=14)
    ax.set_xlabel("Step", fontsize=12)
    st.pyplot (fig)

# ----- Column 2: Insights -----
with col2:
    st.subheader("🧠 Insights from the Boxplot")
    st.markdown("""

        <small>

        <b>Central Tendency:</b><br>

        - The <b>median</b> is close to the center of the box, suggesting a fairly symmetric distribution within the interquartile range (IQR).<br>

        <b>Spread:</b><br>

        - A <b>wide IQR</b> indicates significant variability in the step counts across sessions.<br>

        <b>Outliers:</b><br>

        - The <b>dots on the right</b> are outliers β€” representing very high step counts.<br>

        - These could reflect either:<br>

        - <b>Legitimate long-duration recordings</b><br>

        - Or <b>data quality issues</b> (e.g., duplication or sensor errors)

        <b>Distribution Shape:</b><br>

        - A <b>longer left whisker</b> implies a <b>left-skewed</b> distribution.<br>

        - Most sessions have <b>lower step values</b>, with a few very high outliers.

        </small>

        """, unsafe_allow_html=True)


#st.write("1. Data Visualization - Scatter Plot (feature vs feature or vs target)")
# Assume merged_df is already defined or loaded
df_sample = merged_df  # or use df_sample = merged_df.sample(n=50000) to downsample

st.subheader("Scatter Plot: anglez vs enmo")

col1, col2 = st.columns([1, 1])

with col1:
    #st.subheader("Scatter Plot: anglez vs enmo")
    # fig, ax = plt.subplots(figsize=(6, 4))
    # sns.scatterplot(x=df['anglez'], y=df['enmo'], ax=ax)
    # ax.set_title("Scatter Plot: anglez vs enmo")
    # st.pyplot(fig)

    # Create the plot
    fig, ax = plt.subplots(figsize=(6, 4))
    sns.scatterplot(x='anglez', y='enmo', data=df_sample, ax=ax)
    ax.set_title("Scatter Plot: anglez vs enmo")

    # Display in Streamlit
    st.pyplot(fig)

with col2:
    st.markdown("""

    <small>

    <b>1. Clustered Points:</b> Most `enmo` values are near 0, suggesting low movement.<br>

    <b>2. Symmetry:</b> Spread is balanced on both sides of anglez (Β±), indicating no directional bias.<br>

    <b>3. Weak Correlation:</b> No visible trend, suggesting independence between `anglez` and `enmo`.<br>

    <b>4. Outliers:</b> A few high `enmo` points may indicate sudden or intense movement.<br>

    <b>5. Interpretation:</b> Most data reflects light activity or rest, regardless of body orientation.

    </small>

    """, unsafe_allow_html=True)


# df_sample = merged_df.sample(n=10000)  # adjust sample size for performance

# # Subheader
# st.subheader("Pair Plot of Features")

# # Create pairplot
# fig = sns.pairplot(df_sample[['anglez', 'enmo', 'step']])
# fig.fig.suptitle("Pair Plot of Features", y=1.02)

# # Display in Streamlit
# st.pyplot(fig)
# Define columns to plot

col1, col2 = st.columns([1, 1])  # Equal width

# Column 1: Pair Plot
with col1:
    st.subheader("πŸ“ˆ Pair Plot of Features")
    fig = sns.pairplot(merged_df[['anglez', 'enmo', 'step']])
    st.pyplot(fig)

# Column 2: Insights
with col2:
    st.subheader("🧠 Insights from Pair Plot")
    st.markdown("""

<div style='font-size: 14px'>



### πŸ“Š Distribution Insights:

- **anglez**: Symmetric distribution peaking near -50 to 0.

- **enmo**: Right-skewed, most values below 0.1.

- **step**: Right-skewed, with a few large outliers.



### πŸ” Pairwise Relationships:

- **anglez vs enmo**: No clear trend; cone-like shape.

- **anglez vs step**: No correlation; looks uniformly scattered.

- **enmo vs step**: Clustered at low values. High steps sometimes with low enmo.



### πŸ’‘ Summary:

- Features appear largely **uncorrelated**.

- Helps identify **data distributions** and potential **outliers**.

- Can assist in **feature selection/engineering**.



</div>

""", unsafe_allow_html=True)

# plot_columns = ['anglez', 'enmo', 'step']

# # Safety check: make sure required columns exist
# if all(col in merged_df.columns for col in plot_columns):

#     # Check data size and sample accordingly
#     max_rows = len(merged_df)
#     sample_size = min(10000, max_rows)  # Don't exceed available rows

#     df_sample = merged_df.sample(n=sample_size)

#     # Subheader
#     st.subheader("Pair Plot of Features")

#     # Create pairplot
#     fig = sns.pairplot(df_sample[plot_columns])
#     fig.fig.suptitle("Pair Plot of Features", y=1.02)

#     # Display in Streamlit
#     st.pyplot(fig)

# else:
#     st.error("One or more required columns ('anglez', 'enmo', 'step') are missing in the dataset.")


# Plot
fig, axes = plt.subplots(1, 2, figsize=(14, 5))

sns.histplot(df_sample['anglez'], kde=True, bins=50, ax=axes[0])
axes[0].set_title("Distribution of anglez")

sns.histplot(df_sample['enmo'], kde=True, bins=50, ax=axes[1])
axes[1].set_title("Distribution of enmo")

plt.tight_layout()
st.pyplot(fig)

# Show insights side by side
col1, col2 = st.columns(2)

with col1:
    st.markdown("""

    <div style='font-size: 14px'>

    <h3> πŸ“ˆ Distribution of `anglez`: </h3>

    - The distribution is **roughly symmetric**, centered around **-50 to 0**.

    - It resembles a **left-heavy bell shape**, suggesting:

      - Most sensor angles were **tilted negatively**.

      - Indicates a **natural resting position** or specific posture.

    </div>

    """, unsafe_allow_html=True)

with col2:
    st.markdown("""

    <div style='font-size: 14px'>

    <h3> πŸ“‰ Distribution of `enmo`: </h3>

    - Highly **right-skewed** (sharp peak near zero).

    - The majority of `enmo` values are **very small** (< 0.05), indicating:

      - **Minimal movement or low activity** in most sessions.

      - Few data points reflect **moderate to high movement**.

    </div>

    """, unsafe_allow_html=True)



# st.write("Multicollinearity Check - Correlation Matrix")
# features = ['anglez', 'enmo', 'step', 'night']
# df_subset = merged_df[features]

# # Streamlit title
# st.subheader("Multicollinearity Check - Correlation Matrix")

# # Calculate correlation matrix
# corr_matrix = df_subset.corr()

# # Plot heatmap
# fig, ax = plt.subplots(figsize=(6, 4))
# sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', ax=ax)
# ax.set_title("Correlation Matrix")

# # Display in Streamlit
# st.pyplot(fig)


st.subheader("Multicollinearity Check - Correlation Matrix")

# Select relevant features
features = ['anglez', 'enmo', 'step', 'night']
df_subset = merged_df[features]

# Calculate correlation matrix
corr_matrix = df_subset.corr()

# Create plot
fig, ax = plt.subplots(figsize=(6, 4))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0, fmt=".3f", ax=ax)
ax.set_title("Correlation Matrix")

# Layout in two columns
col1, col2 = st.columns(2)

# Column 1: Heatmap
with col1:
    st.pyplot(fig)

# Column 2: Textual Insights
with col2:
    st.markdown("""

    ### πŸ” Insights from Correlation Matrix 



    - **`anglez` & `enmo`**:  

      πŸ”Έ Weak negative correlation (**-0.11**) β€” suggests minimal linear relationship.



    - **`step` & `night`**:  

      ⚠️ Perfect correlation (**1.00**) β€” indicates **redundancy**, likely representing the same event in different forms.



    - **Overall**:  

      βœ… Low multicollinearity across most features β€” safe for modeling.  

      πŸ“ Recommend removing either `step` or `night` to reduce feature duplication.

    """)


# Encode
le = LabelEncoder()
merged_df['series_id'] = le.fit_transform(merged_df['series_id'])
merged_df['event'] = le.fit_transform(merged_df['event'])

# Drop columns with string or datetime values
drop_cols = ['sensor_timestamp', 'event_timestamp', 'night', 'step', 'sleep_duration_hrs', 'series_id']
df_cleaned = merged_df.drop(columns=[col for col in drop_cols if col in merged_df.columns])

# Ensure only numeric features in X
X = df_cleaned.drop('event', axis=1).select_dtypes(include=[np.number])
y = merged_df['event']

# Split and scale
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=27)

st.subheader("Feature Importance")
# Create model instance
xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='logloss')  # example for classification

# Fit the model
xgb_model.fit(X_train, y_train)

# Plot feature importance
fig, ax = plt.subplots(figsize=(6, 4))
xgb.plot_importance(xgb_model, ax=ax)
ax.set_title("XGBoost Feature Importance")

# Show in Streamlit
st.subheader("XGBoost Feature Importance")



col1, col2 = st.columns(2)

# Column 1: Plot
with col1:
    st.pyplot(fig)
    st.markdown("""

#### 🚫 Low-Impact Features:

- Features like `step` and `night` (excluded in this plot) showed **minimal or redundant contribution**.

- πŸ” You may consider **removing** them to simplify the model.

""")
# Column 2: Insights
with col2:
 st.markdown("""

<small>

<h3> πŸ” XGBoost Feature Importance: Key Insights </h3>



#### πŸ“Œ Top Features:

- πŸ”Ή **`anglez`** β€” Highest importance score (**1557**)

- πŸ”Ή **`enmo`** β€” Close second with score (**1546**)



#### βœ… Summary:

- Both `anglez` and `enmo` contribute **significantly** to the model.

- Their high scores reflect **strong influence** in predicting the target variable.



#### πŸ’‘ Interpretation:

- These features likely capture **activity level** or **sleep posture** patterns.

- Keeping both is **recommended** for accurate classification.

</small>



""", unsafe_allow_html=True)