{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import gc"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"weekly_mech_calls = pd.read_parquet(\"../data/weekly_mech_calls.parquet\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"tools = pd.read_parquet(\"../tmp/tools.parquet\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"fpmmTrades = pd.read_parquet(\"../data/fpmmTrades.parquet\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['request_id', 'request_block', 'prompt_request', 'tool', 'nonce',\n",
" 'trader_address', 'deliver_block', 'error', 'error_message',\n",
" 'prompt_response', 'mech_address', 'p_yes', 'p_no', 'confidence',\n",
" 'info_utility', 'vote', 'win_probability', 'market_creator', 'title',\n",
" 'currentAnswer', 'request_time', 'request_month_year',\n",
" 'request_month_year_week'],\n",
" dtype='object')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools.columns"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" trader_address | \n",
" month_year_week | \n",
" total_trades | \n",
" total_mech_calls | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 0x75c0366bd0cbc3db434fd117267e32f26c5ed857 | \n",
" Sep-08 | \n",
" 2 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" 0x75c0366bd0cbc3db434fd117267e32f26c5ed857 | \n",
" Sep-15 | \n",
" 103 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" 0x75c0366bd0cbc3db434fd117267e32f26c5ed857 | \n",
" Sep-22 | \n",
" 136 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" 0x75c0366bd0cbc3db434fd117267e32f26c5ed857 | \n",
" Sep-29 | \n",
" 165 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" 0x75c0366bd0cbc3db434fd117267e32f26c5ed857 | \n",
" Oct-06 | \n",
" 51 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" trader_address month_year_week total_trades \\\n",
"0 0x75c0366bd0cbc3db434fd117267e32f26c5ed857 Sep-08 2 \n",
"1 0x75c0366bd0cbc3db434fd117267e32f26c5ed857 Sep-15 103 \n",
"2 0x75c0366bd0cbc3db434fd117267e32f26c5ed857 Sep-22 136 \n",
"3 0x75c0366bd0cbc3db434fd117267e32f26c5ed857 Sep-29 165 \n",
"4 0x75c0366bd0cbc3db434fd117267e32f26c5ed857 Oct-06 51 \n",
"\n",
" total_mech_calls \n",
"0 0 \n",
"1 0 \n",
"2 0 \n",
"3 0 \n",
"4 0 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"weekly_mech_calls.head()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" trader_address | \n",
" month_year_week | \n",
" total_trades | \n",
" total_mech_calls | \n",
"
\n",
" \n",
" \n",
" \n",
" 14363 | \n",
" 0xf278dfdb02ecddc1214a151906426b9171460ec8 | \n",
" Nov-24 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 14364 | \n",
" 0xf278dfdb02ecddc1214a151906426b9171460ec8 | \n",
" Dec-01 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 14365 | \n",
" 0xf278dfdb02ecddc1214a151906426b9171460ec8 | \n",
" Dec-08 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 14366 | \n",
" 0xf278dfdb02ecddc1214a151906426b9171460ec8 | \n",
" Dec-15 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 14367 | \n",
" 0xf278dfdb02ecddc1214a151906426b9171460ec8 | \n",
" Dec-22 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" trader_address month_year_week \\\n",
"14363 0xf278dfdb02ecddc1214a151906426b9171460ec8 Nov-24 \n",
"14364 0xf278dfdb02ecddc1214a151906426b9171460ec8 Dec-01 \n",
"14365 0xf278dfdb02ecddc1214a151906426b9171460ec8 Dec-08 \n",
"14366 0xf278dfdb02ecddc1214a151906426b9171460ec8 Dec-15 \n",
"14367 0xf278dfdb02ecddc1214a151906426b9171460ec8 Dec-22 \n",
"\n",
" total_trades total_mech_calls \n",
"14363 0 0 \n",
"14364 0 0 \n",
"14365 0 0 \n",
"14366 0 0 \n",
"14367 1 0 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"weekly_mech_calls.tail()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 14368.0\n",
"mean 0.0\n",
"std 0.0\n",
"min 0.0\n",
"25% 0.0\n",
"50% 0.0\n",
"75% 0.0\n",
"max 0.0\n",
"Name: total_mech_calls, dtype: float64"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"weekly_mech_calls.total_mech_calls.describe()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "hf_dashboards",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}