cyberosa commited on
Commit
5f9fbec
·
1 Parent(s): 9863c18

fixing error in agents graph

Browse files
Files changed (1) hide show
  1. tabs/agent_graphs.py +9 -3
tabs/agent_graphs.py CHANGED
@@ -85,7 +85,7 @@ def plot_rolling_average_roi(
85
  # Filter the weekly_roi_df to include only those addresses
86
  filtered_traders_data = traders_data[
87
  traders_data["trader_address"].isin(unique_addresses)
88
- ]
89
  # create the date column
90
  filtered_traders_data["creation_timestamp"] = pd.to_datetime(
91
  filtered_traders_data["creation_timestamp"]
@@ -161,6 +161,12 @@ def get_weekly_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame:
161
  # Resample to weekly frequency and calculate mean
162
  weekly_avg = daily_avg.resample("W").mean().reset_index()
163
 
 
 
 
 
 
 
164
  return weekly_avg
165
 
166
 
@@ -174,7 +180,7 @@ def plot_weekly_average_roi(
174
  # Filter the weekly_roi_df to include only those addresses
175
  filtered_traders_data = traders_data[
176
  traders_data["trader_address"].isin(unique_addresses)
177
- ]
178
  # create the date column
179
  filtered_traders_data["creation_timestamp"] = pd.to_datetime(
180
  filtered_traders_data["creation_timestamp"]
@@ -191,7 +197,7 @@ def plot_weekly_average_roi(
191
  fig = px.line(
192
  weekly_avg_roi_df,
193
  x="creation_date",
194
- y="weekly_avg_roi",
195
  )
196
  fig.update_layout(
197
  xaxis_title="Week",
 
85
  # Filter the weekly_roi_df to include only those addresses
86
  filtered_traders_data = traders_data[
87
  traders_data["trader_address"].isin(unique_addresses)
88
+ ].copy()
89
  # create the date column
90
  filtered_traders_data["creation_timestamp"] = pd.to_datetime(
91
  filtered_traders_data["creation_timestamp"]
 
161
  # Resample to weekly frequency and calculate mean
162
  weekly_avg = daily_avg.resample("W").mean().reset_index()
163
 
164
+ # Remove NaN values
165
+ weekly_avg = weekly_avg.dropna(subset=["roi"])
166
+
167
+ # Rename columns for clarity
168
+ weekly_avg = weekly_avg.rename(columns={"roi": "weekly_avg_roi"})
169
+
170
  return weekly_avg
171
 
172
 
 
180
  # Filter the weekly_roi_df to include only those addresses
181
  filtered_traders_data = traders_data[
182
  traders_data["trader_address"].isin(unique_addresses)
183
+ ].copy()
184
  # create the date column
185
  filtered_traders_data["creation_timestamp"] = pd.to_datetime(
186
  filtered_traders_data["creation_timestamp"]
 
197
  fig = px.line(
198
  weekly_avg_roi_df,
199
  x="creation_date",
200
+ y="roi",
201
  )
202
  fig.update_layout(
203
  xaxis_title="Week",