Spaces:
Runtime error
Runtime error
import pandas as pd | |
import gradio as gr | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from tabs.daily_graphs import color_mapping | |
from datetime import datetime | |
color_mapping = [ | |
"darkviolet", | |
"purple", | |
"goldenrod", | |
"darkgoldenrod", | |
"green", | |
"darkgreen", | |
] | |
def plot_kl_div_per_market(closed_markets: pd.DataFrame) -> gr.Plot: | |
# adding the total | |
all_markets = closed_markets.copy(deep=True) | |
all_markets["market_creator"] = "all" | |
# merging both dataframes | |
final_markets = pd.concat([closed_markets, all_markets], ignore_index=True) | |
final_markets = final_markets.sort_values(by="opening_datetime", ascending=True) | |
fig = px.box( | |
final_markets, | |
x="month_year_week", | |
y="kl_divergence", | |
color="market_creator", | |
color_discrete_sequence=["purple", "goldenrod", "darkgreen"], | |
category_orders={"market_creator": ["pearl", "quickstart", "all"]}, | |
) | |
fig.update_traces(boxmean=True) | |
fig.update_layout( | |
xaxis_title="Markets closing Week", | |
yaxis_title="KullbackβLeibler divergence", | |
legend=dict(yanchor="top", y=0.5), | |
width=800, # Adjusted for better fit on laptop screens | |
height=600, # Adjusted for better fit on laptop screens | |
) | |
fig.update_xaxes(tickformat="%b %d\n%Y") | |
return gr.Plot( | |
value=fig, | |
) | |
def plot_kl_div_with_off_by(closed_markets: pd.DataFrame) -> gr.Plot: | |
# adding the total | |
all_markets = closed_markets.copy(deep=True) | |
all_markets["market_creator"] = "all" | |
# merging both dataframes | |
final_markets = pd.concat([closed_markets, all_markets], ignore_index=True) | |
final_markets = final_markets.sort_values(by="opening_datetime", ascending=True) | |
# Create the main figure and axis | |
fig, ax1 = plt.subplots(figsize=(10, 6)) | |
# Create the boxplot using seaborn | |
sns.boxplot( | |
data=final_markets, | |
x="month_year_week", | |
y="kl_divergence", | |
ax=ax1, | |
hue="market_creator", | |
) | |
# Set labels and title for the main axis | |
ax1.set_xlabel("Week") | |
ax1.set_ylabel("KL Divergence") | |
ax1.set_title("KL Divergence Boxplot with Off-by Percentage") | |
# Create a secondary y-axis | |
ax2 = ax1.twinx() | |
# Plot the off_by_perc values on the secondary y-axis | |
for i, week in enumerate(closed_markets["month_year_week"].unique()): | |
off_by_perc = closed_markets[closed_markets["month_year_week"] == week][ | |
"off_by_perc" | |
] | |
ax2.scatter([i] * len(off_by_perc), off_by_perc, color="red", alpha=0.01) | |
# Set label for the secondary y-axis | |
ax2.set_ylabel("Off-by Percentage") | |
# Adjust the layout and display the plot | |
plt.tight_layout() | |
return gr.Plot( | |
value=fig, | |
) | |
def plot_total_bet_amount_per_trader_per_market( | |
trades_df: pd.DataFrame, trader_filter: str = "all" | |
) -> gr.Plot: | |
"""Plots the total bet amount per trader per market.""" | |
traders_all = trades_df.copy(deep=True) | |
traders_all["market_creator"] = "all" | |
# merging both dataframes | |
final_traders = pd.concat([traders_all, trades_df], ignore_index=True) | |
final_traders = final_traders.sort_values(by="creation_date", ascending=True) | |
# Create binary staking category | |
final_traders["trader_type"] = final_traders["staking"].apply( | |
lambda x: "non_Olas" if x == "non_Olas" else "Olas" | |
) | |
final_traders["trader_market"] = final_traders.apply( | |
lambda x: (x["trader_type"], x["market_creator"]), axis=1 | |
) | |
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"] | |
if trader_filter == "Olas": | |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"] | |
final_traders = final_traders.loc[final_traders["trader_type"] == "Olas"] | |
elif trader_filter == "non_Olas": | |
final_traders = final_traders.loc[final_traders["trader_type"] != "Olas"] | |
total_bet_amount = ( | |
final_traders.groupby( | |
["month_year_week", "market_creator", "trader_address", "title"], | |
sort=False, | |
)["collateral_amount"] | |
.sum() | |
.reset_index(name="total_bet_amount") | |
) | |
# Convert string dates to datetime and sort them | |
all_dates_dt = sorted( | |
[ | |
datetime.strptime(date, "%b-%d-%Y") | |
for date in total_bet_amount["month_year_week"].unique() | |
] | |
) | |
# Convert back to string format | |
all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt] | |
fig = px.box( | |
total_bet_amount, | |
x="month_year_week", | |
y="total_bet_amount", | |
color="market_creator", | |
color_discrete_sequence=color_discrete_sequence, | |
category_orders={ | |
"market_creator": ["pearl", "quickstart", "all"], | |
"trader_market": [ | |
("Olas", "pearl"), | |
("non_Olas", "pearl"), | |
("Olas", "quickstart"), | |
("non_Olas", "quickstart"), | |
("Olas", "all"), | |
("non_Olas", "all"), | |
], | |
}, | |
# facet_col="trader_type", | |
) | |
fig.update_traces(boxmean=True) | |
fig.update_layout( | |
xaxis_title="Week", | |
yaxis_title="Weekly bet amounts per trader per market", | |
legend=dict(yanchor="top", y=0.5), | |
width=1000, # Adjusted for better fit on laptop screens | |
height=600, # Adjusted for better fit on laptop screens | |
) | |
# for axis in fig.layout: | |
# if axis.startswith("xaxis"): | |
# fig.layout[axis].update(title="Week") | |
fig.update_xaxes(tickformat="%b %d\n%Y") | |
# Update layout to force x-axis category order (hotfix for a sorting issue) | |
fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates}) | |
return gr.Plot( | |
value=fig, | |
) | |
def plot_nr_trades_per_trader_per_market( | |
traders_data: pd.DataFrame, trader_filter: str = "all" | |
) -> gr.Plot: | |
"""Function to paint the plot with the metric nr_trades_per_market by trader type and market creator""" | |
traders_all = traders_data.copy(deep=True) | |
traders_all["market_creator"] = "all" | |
# merging both dataframes | |
final_traders = pd.concat([traders_all, traders_data], ignore_index=True) | |
final_traders = final_traders.sort_values(by="creation_date", ascending=True) | |
# Create binary staking category | |
final_traders["trader_type"] = final_traders["staking"].apply( | |
lambda x: "non_Olas" if x == "non_Olas" else "Olas" | |
) | |
final_traders["trader_market"] = final_traders.apply( | |
lambda x: (x["trader_type"], x["market_creator"]), axis=1 | |
) | |
color_discrete_sequence = ["purple", "goldenrod", "darkgreen"] | |
if trader_filter == "Olas": | |
color_discrete_sequence = ["darkviolet", "goldenrod", "green"] | |
final_traders = final_traders.loc[final_traders["trader_type"] == "Olas"] | |
elif trader_filter == "non_Olas": | |
final_traders = final_traders.loc[final_traders["trader_type"] != "Olas"] | |
fig = px.box( | |
final_traders, | |
x="month_year_week", | |
y="nr_trades_per_market", | |
color="market_creator", | |
color_discrete_sequence=color_discrete_sequence, | |
category_orders={ | |
"market_creator": ["pearl", "quickstart", "all"], | |
"trader_market": [ | |
("Olas", "pearl"), | |
("non_Olas", "pearl"), | |
("Olas", "quickstart"), | |
("non_Olas", "quickstart"), | |
("Olas", "all"), | |
("non_Olas", "all"), | |
], | |
}, | |
# facet_col="trader_type", | |
) | |
fig.update_traces(boxmean=True) | |
fig.update_layout( | |
xaxis_title="Week", | |
yaxis_title="Nr trades per trader per market", | |
legend=dict(yanchor="top", y=0.5), | |
width=1000, # Adjusted for better fit on laptop screens | |
height=600, # Adjusted for better fit on laptop screens | |
) | |
fig.update_xaxes(tickformat="%b %d\n%Y") | |
return gr.Plot( | |
value=fig, | |
) | |