cyberosa
commited on
Commit
·
2467f4b
1
Parent(s):
fe854e6
fixing the mech requests from top three accurate tools
Browse files- app.py +8 -9
- tabs/tool_accuracy.py +3 -10
app.py
CHANGED
@@ -165,13 +165,13 @@ def load_all_data():
|
|
165 |
)
|
166 |
df8 = pd.read_parquet(errors_by_mech)
|
167 |
|
168 |
-
# Read
|
169 |
-
|
170 |
repo_id="valory/Olas-predict-dataset",
|
171 |
-
filename="
|
172 |
repo_type="dataset",
|
173 |
)
|
174 |
-
df9 = pd.read_parquet(
|
175 |
return df1, df2, df3, df4, df5, df6, df7, df8, df9
|
176 |
|
177 |
|
@@ -188,7 +188,7 @@ def prepare_data():
|
|
188 |
winning_df,
|
189 |
daily_mech_requests,
|
190 |
errors_by_mech,
|
191 |
-
|
192 |
) = load_all_data()
|
193 |
print(trades_df.info())
|
194 |
|
@@ -222,7 +222,7 @@ def prepare_data():
|
|
222 |
winning_df,
|
223 |
daily_mech_requests,
|
224 |
errors_by_mech,
|
225 |
-
|
226 |
)
|
227 |
|
228 |
|
@@ -235,7 +235,7 @@ def prepare_data():
|
|
235 |
winning_df,
|
236 |
daily_mech_requests,
|
237 |
errors_by_mech,
|
238 |
-
|
239 |
) = prepare_data()
|
240 |
trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
|
241 |
unknown_trades = unknown_trades.sort_values(by="creation_timestamp", ascending=True)
|
@@ -554,9 +554,8 @@ with demo:
|
|
554 |
)
|
555 |
with gr.Row():
|
556 |
_ = plot_mech_requests_topthree_tools(
|
557 |
-
daily_mech_requests=
|
558 |
tools_accuracy_info=tools_accuracy_info,
|
559 |
-
pearl_agents=pearl_agents_df,
|
560 |
top=3,
|
561 |
)
|
562 |
|
|
|
165 |
)
|
166 |
df8 = pd.read_parquet(errors_by_mech)
|
167 |
|
168 |
+
# Read daily_mech_requests_by_pearl_agents.parquet
|
169 |
+
daily_mech_requests_by_pearl_agents = hf_hub_download(
|
170 |
repo_id="valory/Olas-predict-dataset",
|
171 |
+
filename="daily_mech_requests_by_pearl_agents.parquet",
|
172 |
repo_type="dataset",
|
173 |
)
|
174 |
+
df9 = pd.read_parquet(daily_mech_requests_by_pearl_agents)
|
175 |
return df1, df2, df3, df4, df5, df6, df7, df8, df9
|
176 |
|
177 |
|
|
|
188 |
winning_df,
|
189 |
daily_mech_requests,
|
190 |
errors_by_mech,
|
191 |
+
daily_mech_requests_by_pearl_agents,
|
192 |
) = load_all_data()
|
193 |
print(trades_df.info())
|
194 |
|
|
|
222 |
winning_df,
|
223 |
daily_mech_requests,
|
224 |
errors_by_mech,
|
225 |
+
daily_mech_requests_by_pearl_agents,
|
226 |
)
|
227 |
|
228 |
|
|
|
235 |
winning_df,
|
236 |
daily_mech_requests,
|
237 |
errors_by_mech,
|
238 |
+
daily_mech_request_by_pearl_agents,
|
239 |
) = prepare_data()
|
240 |
trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
|
241 |
unknown_trades = unknown_trades.sort_values(by="creation_timestamp", ascending=True)
|
|
|
554 |
)
|
555 |
with gr.Row():
|
556 |
_ = plot_mech_requests_topthree_tools(
|
557 |
+
daily_mech_requests=daily_mech_requests_by_pearl_agents,
|
558 |
tools_accuracy_info=tools_accuracy_info,
|
|
|
559 |
top=3,
|
560 |
)
|
561 |
|
tabs/tool_accuracy.py
CHANGED
@@ -135,9 +135,8 @@ def plot_tools_weighted_accuracy_rotated_graph(
|
|
135 |
|
136 |
|
137 |
def plot_mech_requests_topthree_tools(
|
138 |
-
|
139 |
tools_accuracy_info: pd.DataFrame,
|
140 |
-
pearl_agents: pd.DataFrame,
|
141 |
top: int,
|
142 |
):
|
143 |
"""Function to plot the percentage of mech requests from the top three tools only for pearl agents"""
|
@@ -146,18 +145,12 @@ def plot_mech_requests_topthree_tools(
|
|
146 |
by="tool_accuracy", ascending=False
|
147 |
).head(top)
|
148 |
top_tools = top_tools.tool.tolist()
|
149 |
-
# Get the list of unique addresses from the daa_pearl_df
|
150 |
-
unique_addresses = pearl_agents["safe_address"].unique()
|
151 |
-
# Filter the weekly_roi_df to include only those addresses
|
152 |
-
daily_mech_requests_local_copy = daily_mech_requests[
|
153 |
-
daily_mech_requests["trader_address"].isin(unique_addresses)
|
154 |
-
].copy()
|
155 |
|
156 |
# Filter the daily mech requests for the top three tools
|
157 |
|
158 |
# Get the daily total of mech requests no matter the tool
|
159 |
total_daily_mech_requests = (
|
160 |
-
|
161 |
.agg({"total_mech_requests": "sum"})
|
162 |
.reset_index()
|
163 |
)
|
@@ -168,7 +161,7 @@ def plot_mech_requests_topthree_tools(
|
|
168 |
)
|
169 |
# Merge the total daily mech requests with the daily mech requests
|
170 |
daily_mech_requests_local_copy = pd.merge(
|
171 |
-
|
172 |
total_daily_mech_requests,
|
173 |
on="request_date",
|
174 |
how="left",
|
|
|
135 |
|
136 |
|
137 |
def plot_mech_requests_topthree_tools(
|
138 |
+
daily_mech_requests_by_pearl_agents: pd.DataFrame,
|
139 |
tools_accuracy_info: pd.DataFrame,
|
|
|
140 |
top: int,
|
141 |
):
|
142 |
"""Function to plot the percentage of mech requests from the top three tools only for pearl agents"""
|
|
|
145 |
by="tool_accuracy", ascending=False
|
146 |
).head(top)
|
147 |
top_tools = top_tools.tool.tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
# Filter the daily mech requests for the top three tools
|
150 |
|
151 |
# Get the daily total of mech requests no matter the tool
|
152 |
total_daily_mech_requests = (
|
153 |
+
daily_mech_requests_by_pearl_agents.groupby(["request_date"])
|
154 |
.agg({"total_mech_requests": "sum"})
|
155 |
.reset_index()
|
156 |
)
|
|
|
161 |
)
|
162 |
# Merge the total daily mech requests with the daily mech requests
|
163 |
daily_mech_requests_local_copy = pd.merge(
|
164 |
+
daily_mech_requests_by_pearl_agents,
|
165 |
total_daily_mech_requests,
|
166 |
on="request_date",
|
167 |
how="left",
|