Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importing Libraries and functions from utils.py in approach_api
|
2 |
+
import streamlit as st
|
3 |
+
from approach_api.utils.news_extraction_api import extract_news
|
4 |
+
from approach_api.utils.news_summarisation import summarize_text
|
5 |
+
from approach_api.utils.news_sentiment import analyze_sentiment
|
6 |
+
from approach_api.utils.topic_extraction import preprocess_text, train_lda, extract_topic_words
|
7 |
+
from approach_api.utils.comparative_analysis import comparative_sentiment_analysis
|
8 |
+
from approach_api.utils.text_to_speech import text_to_speech
|
9 |
+
import os
|
10 |
+
|
11 |
+
# Function
|
12 |
+
def analyze_company_news(company):
|
13 |
+
st.write(f"Analyzing company: {company}")
|
14 |
+
|
15 |
+
with st.spinner("Fetching news articles..."):
|
16 |
+
articles = extract_news(company)
|
17 |
+
if not articles:
|
18 |
+
st.error("No news articles found. Try a different company.")
|
19 |
+
return None
|
20 |
+
st.write(f"Found {len(articles)} articles")
|
21 |
+
|
22 |
+
articles_data = []
|
23 |
+
texts = [article["content"] for article in articles]
|
24 |
+
|
25 |
+
with st.spinner("Performing sentiment analysis..."):
|
26 |
+
sentiment_results = analyze_sentiment(texts)
|
27 |
+
st.write(f"Sentiment analysis completed for {len(sentiment_results['Predicted Sentiment'])} articles")
|
28 |
+
|
29 |
+
for article, sentiment in zip(articles, sentiment_results["Predicted Sentiment"]):
|
30 |
+
summary = summarize_text(article["content"])
|
31 |
+
preprocessed_text = preprocess_text([article["content"]])
|
32 |
+
lda_model, dictionary = train_lda(preprocessed_text)
|
33 |
+
topic_words = extract_topic_words(lda_model)
|
34 |
+
|
35 |
+
articles_data.append({
|
36 |
+
"Title": article["title"],
|
37 |
+
"Summary": summary,
|
38 |
+
"Sentiment": sentiment,
|
39 |
+
"Topics": topic_words
|
40 |
+
})
|
41 |
+
|
42 |
+
with st.spinner("Performing comparative analysis..."):
|
43 |
+
analysis_result = comparative_sentiment_analysis(company, articles_data)
|
44 |
+
st.write("Comparative analysis completed")
|
45 |
+
st.write("Analysis result:", analysis_result)
|
46 |
+
|
47 |
+
final_summary = f"{company}’s latest news coverage is mostly {analysis_result['Final Sentiment Analysis']}."
|
48 |
+
|
49 |
+
with st.spinner("Generating Hindi TTS summary..."):
|
50 |
+
try:
|
51 |
+
audio_file = text_to_speech(final_summary)
|
52 |
+
if os.path.exists(audio_file):
|
53 |
+
st.write(f"TTS summary generated: {audio_file}")
|
54 |
+
else:
|
55 |
+
st.error("Failed to generate TTS summary")
|
56 |
+
audio_file = None
|
57 |
+
except Exception as e:
|
58 |
+
st.error(f"TTS generation failed: {str(e)}")
|
59 |
+
audio_file = None
|
60 |
+
|
61 |
+
return {
|
62 |
+
"Company": company,
|
63 |
+
"Articles": articles_data,
|
64 |
+
"Comparative Sentiment Score": analysis_result,
|
65 |
+
"Audio": audio_file
|
66 |
+
}
|
67 |
+
|
68 |
+
st.title("Company News Analysis")
|
69 |
+
company = st.text_input("Enter the company name for analysis:")
|
70 |
+
if st.button("Analyze") and company:
|
71 |
+
st.write(f"Starting analysis for: {company}")
|
72 |
+
result = analyze_company_news(company)
|
73 |
+
if result:
|
74 |
+
st.subheader(f"Analysis for {result['Company']}")
|
75 |
+
|
76 |
+
for article in result["Articles"]:
|
77 |
+
st.write(f"**Title:** {article['Title']}")
|
78 |
+
st.write(f"**Summary:** {article['Summary']}")
|
79 |
+
st.write(f"**Sentiment:** {article['Sentiment']}")
|
80 |
+
st.write(f"**Topics:** {', '.join(article['Topics'])}")
|
81 |
+
st.markdown("---")
|
82 |
+
|
83 |
+
st.subheader("Comparative Sentiment Score")
|
84 |
+
st.json(result["Comparative Sentiment Score"])
|
85 |
+
|
86 |
+
st.subheader("Hindi TTS Summary")
|
87 |
+
if result["Audio"]:
|
88 |
+
st.audio(result["Audio"], format="audio/mp3")
|
89 |
+
else:
|
90 |
+
st.warning("TTS summary not available")
|