uzzam24's picture
yes
03a9964
import subprocess
import sys
try:
import sentencepiece
except ImportError:
subprocess.check_call([sys.executable, "-m", "pip", "install", "sentencepiece"])
import sentencepiece
import gradio as gr
import torch
from transformers import XLNetTokenizer, XLNetModel
import numpy as np
import joblib
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased')
xlnet_model = XLNetModel.from_pretrained('xlnet-base-cased').to(device)
random_forest_classifier = joblib.load("random_forest_model.pkl")
def get_embedding(text):
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=512).to(device)
with torch.no_grad():
outputs = xlnet_model(**inputs)
return outputs.last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
def predict_complexity(sentence, target_word):
try:
sentence_embedding = get_embedding(sentence)
word_embedding = get_embedding(target_word)
combined_embedding = np.concatenate([sentence_embedding, word_embedding]).reshape(1, -1)
prediction = random_forest_classifier.predict(combined_embedding)[0]
return f"πŸ” Predicted Complexity Level: **{prediction}**"
except Exception as e:
return f"❌ Error: {str(e)}"
with gr.Blocks() as demo:
gr.Markdown("## ✨ Word Complexity Predictor")
with gr.Row():
sentence_input = gr.Textbox(label="Full Sentence", placeholder="Type a full sentence...")
word_input = gr.Textbox(label="Target Word", placeholder="Type the target word...")
output = gr.Markdown()
gr.Button("Predict Complexity").click(predict_complexity, [sentence_input, word_input], output)
demo.launch()