assi1 / ELR_plus /data_loader /webvision.py
uthurumella's picture
Upload 69 files
72fc481 verified
raw
history blame
5.01 kB
import sys
import os
import numpy as np
from PIL import Image
import torchvision
from torch.utils.data.dataset import Subset
from sklearn.metrics.pairwise import cosine_similarity, euclidean_distances
import torch
import torch.nn.functional as F
import random
def get_webvision(root, cfg_trainer, num_samples=0, train=True,
transform_train=None, transform_val=None, num_class = 50):
if train:
train_dataset = Webvision(root, cfg_trainer, num_samples=num_samples, train=train, transform=transform_train, num_class = num_class)
val_dataset = Webvision(root, cfg_trainer, num_samples=num_samples, val=train, transform=transform_val, num_class = num_class)
print(f"Train: {len(train_dataset)} WebVision Val: {len(val_dataset)}")
else:
train_dataset = []
val_dataset = ImagenetVal(root, transform=transform_val, num_class = num_class)
print(f"Imagnet Val: {len(val_dataset)}")
return train_dataset, val_dataset
class ImagenetVal(torch.utils.data.Dataset):
def __init__(self, root, transform, num_class):
self.root = root+'imagenet/'
self.transform = transform
with open(self.root+'imagenet_val.txt') as f:
lines=f.readlines()
self.val_imgs = []
self.val_labels = {}
for line in lines:
img, target = line.split()
target = int(target)
if target<num_class:
self.val_imgs.append(img)
self.val_labels[img]=target
def __getitem__(self, index):
img_path = self.val_imgs[index]
target = self.val_labels[img_path]
image = Image.open(self.root+'val/'+img_path).convert('RGB')
img = self.transform(image)
return img, target, index, target
def __len__(self):
return len(self.val_imgs)
class Webvision(torch.utils.data.Dataset):
def __init__(self, root, cfg_trainer, num_samples=0, train=False, val=False, test=False, transform=None, num_class = 50):
self.cfg_trainer = cfg_trainer
self.root = root
self.transform = transform
self.train_labels = {}
self.test_labels = {}
self.val_labels = {}
self.train = train
self.val = val
self.test = test
if self.val:
with open(self.root+'info/val_filelist.txt') as f:
lines=f.readlines()
self.val_imgs = []
self.val_labels = {}
for line in lines:
img, target = line.split()
target = int(target)
if target<num_class:
self.val_imgs.append(img)
self.val_labels[img]=target
elif self.test:
with open(self.root+'info/val_filelist.txt') as f:
lines=f.readlines()
self.test_imgs = []
self.test_labels = {}
for line in lines:
img, target = line.split()
target = int(target)
if target<num_class:
self.test_imgs.append(img)
self.test_labels[img]=target
else:
with open(self.root+'info/train_filelist_google.txt') as f:
lines=f.readlines()
train_imgs = []
self.train_labels = {}
for line in lines:
img, target = line.split()
target = int(target)
if target<num_class:
train_imgs.append(img)
self.train_labels[img]=target
self.train_imgs = train_imgs
def __getitem__(self, index):
if self.train:
img_path = self.train_imgs[index]
target = self.train_labels[img_path]
image = Image.open(self.root+img_path)
img0 = image.convert('RGB')
img0 = self.transform(img0)
return img0, target, index, target
elif self.val:
img_path = self.val_imgs[index]
target = self.val_labels[img_path]
image = Image.open(self.root+'val_images_256/'+img_path).convert('RGB')
img = self.transform(image)
return img, target, index, target
elif self.test:
img_path = self.test_imgs[index]
target = self.test_labels[img_path]
image = Image.open(self.root+'val_images_256/'+img_path).convert('RGB')
img = self.transform(image)
return img, target, index, target
def __len__(self):
if self.test:
return len(self.test_imgs)
if self.val:
return len(self.val_imgs)
else:
return len(self.train_imgs)