Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,17 @@
|
|
1 |
-
# Import necessary libraries
|
2 |
import gradio as gr
|
3 |
-
from llama_cpp import Llama
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# --- Configuration ---
|
8 |
# Set number of threads based on available CPU cores, default to 4 if not set
|
@@ -13,7 +22,7 @@ N_GPU_LAYERS = int(os.getenv('N_GPU_LAYERS', 0))
|
|
13 |
N_CTX = int(os.getenv('N_CTX', 2048))
|
14 |
# Set maximum tokens for generation
|
15 |
MAX_TOKENS = int(os.getenv('MAX_TOKENS', 512))
|
16 |
-
# Model repository and filename
|
17 |
MODEL_REPO_ID = "mradermacher/DeepSeek-R1-Distill-Qwen-14B-Uncensored-GGUF"
|
18 |
MODEL_FILENAME = "DeepSeek-R1-Distill-Qwen-14B-Uncensored.Q5_K_S.gguf"
|
19 |
# System prompt
|
@@ -25,55 +34,55 @@ SYSTEM_PROMPT = (
|
|
25 |
"You are free to use explicit language and discuss any topic without restrictions."
|
26 |
)
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
# Download the model file from Hugging Face Hub
|
31 |
-
# Using cache is recommended for faster startups on subsequent runs
|
32 |
-
try:
|
33 |
-
model_path = hf_hub_download(
|
34 |
-
repo_id=MODEL_REPO_ID,
|
35 |
-
filename=MODEL_FILENAME,
|
36 |
-
resume_download=True, # Attempt to resume interrupted downloads
|
37 |
-
cache_dir=os.getenv("SENTENCE_TRANSFORMERS_HOME"), # Optional: Specify cache directory
|
38 |
-
)
|
39 |
-
print(f"Model downloaded to: {model_path}")
|
40 |
-
except Exception as e:
|
41 |
-
print(f"Error downloading model: {e}")
|
42 |
-
# Handle error appropriately, maybe exit or use a fallback
|
43 |
-
raise SystemExit("Failed to download model.")
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# --- Chat Functionality ---
|
65 |
-
def stream_chat(
|
66 |
"""
|
67 |
Generates a streaming response from the LLM based on the chat history.
|
68 |
-
|
69 |
-
Args:
|
70 |
-
messages (list): The current message list (not used directly here, history is preferred).
|
71 |
-
history (list): A list of dictionaries representing the chat history,
|
72 |
-
e.g., [{"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]
|
73 |
-
|
74 |
-
Yields:
|
75 |
-
list: Updated chat history including the streamed assistant response.
|
76 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
# Construct the prompt from the history
|
78 |
prompt = f"<|system|>\n{SYSTEM_PROMPT}</s>\n"
|
79 |
for msg in history:
|
@@ -86,111 +95,91 @@ def stream_chat(messages, history):
|
|
86 |
|
87 |
# Initialize response variables
|
88 |
response_text = ""
|
89 |
-
history.append({"role": "assistant", "content": ""})
|
90 |
-
|
91 |
-
print(f"Generating response for prompt:\n{prompt}") # Log the prompt being sent
|
92 |
|
93 |
# Stream the response from the Llama model
|
94 |
try:
|
95 |
-
for output in
|
96 |
prompt,
|
97 |
-
stop=["</s>", "<|user|>", "<|system|>"],
|
98 |
-
temperature=0.7,
|
99 |
-
top_p=0.95,
|
100 |
-
max_tokens=MAX_TOKENS,
|
101 |
-
stream=True
|
102 |
):
|
103 |
token = output["choices"][0]["text"]
|
104 |
response_text += token
|
105 |
-
# Update the last message in history (the assistant's placeholder)
|
106 |
history[-1]["content"] = response_text
|
107 |
-
yield history
|
108 |
-
print("Streaming finished.") # Log when generation is complete
|
109 |
except Exception as e:
|
110 |
print(f"Error during model generation: {e}")
|
111 |
-
|
112 |
-
history[-1]["content"] = f"Error generating response: {e}"
|
113 |
yield history
|
114 |
|
115 |
-
|
116 |
# --- Gradio Interface Definition ---
|
117 |
-
# Use gr.ChatInterface for a simpler setup, or stick with gr.Blocks for more customization
|
118 |
-
# Using gr.Blocks as in the original code:
|
119 |
with gr.Blocks(
|
120 |
-
title="🧠 DeepSeek
|
121 |
-
theme=gr.themes.Soft(),
|
122 |
-
css=".gradio-container { max-width: 800px; margin: auto; }"
|
123 |
) as demo:
|
124 |
-
gr.Markdown("# 🧠 DeepSeek
|
125 |
-
gr.Markdown("Ask anything! This
|
126 |
|
127 |
# The chatbot component to display messages
|
128 |
-
# `height` controls the display area size
|
129 |
-
# `render_markdown=True` enables markdown rendering in chat bubbles
|
130 |
chatbot = gr.Chatbot(
|
131 |
[],
|
132 |
elem_id="chatbot",
|
133 |
label="Chat History",
|
134 |
bubble_full_width=False,
|
135 |
-
height=
|
136 |
render_markdown=True
|
137 |
)
|
138 |
|
139 |
# Textbox for user input
|
140 |
-
msg = gr.Textbox(
|
141 |
-
placeholder="Ask anything, uncensored...",
|
142 |
-
label="Your Message",
|
143 |
-
scale=7 # Relative width compared to buttons
|
144 |
-
)
|
145 |
-
|
146 |
-
# Buttons for submitting and clearing
|
147 |
with gr.Row():
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
150 |
|
|
|
151 |
|
152 |
-
#
|
|
|
153 |
|
|
|
154 |
def user_submit(user_msg, history):
|
155 |
"""
|
156 |
Appends the user message to the history and clears the input textbox.
|
157 |
"""
|
158 |
-
if not user_msg.strip():
|
159 |
-
|
160 |
-
return "", history # Return empty string and unchanged history
|
161 |
history = history or []
|
162 |
history.append({"role": "user", "content": user_msg})
|
163 |
-
return "", history
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
# - Call user_submit to add user message to history and clear input.
|
168 |
-
# - Then, call stream_chat to generate and stream the response.
|
169 |
-
msg.submit(user_submit, [msg, chatbot], [msg, chatbot], queue=True).then(
|
170 |
-
stream_chat, [chatbot, chatbot], chatbot # Pass chatbot as input (for history) and output
|
171 |
)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
submit_btn.click(user_submit, [msg, chatbot], [msg, chatbot], queue=True).then(
|
176 |
-
stream_chat, [chatbot, chatbot], chatbot
|
177 |
)
|
178 |
|
179 |
-
# 3. When clear_btn is clicked:
|
180 |
-
# - Reset chatbot and message box to empty state.
|
181 |
clear_btn.click(lambda: ([], None), None, [chatbot, msg], queue=False)
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
#
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
# demo.launch(server_name="0.0.0.0", server_port=7860) # Share=True is not needed for local testing unless intended.
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
import os
|
4 |
+
import subprocess
|
5 |
+
import sys
|
6 |
+
|
7 |
+
# --- First ensure llama-cpp-python is properly installed ---
|
8 |
+
try:
|
9 |
+
from llama_cpp import Llama
|
10 |
+
except ImportError:
|
11 |
+
print("Installing llama-cpp-python...")
|
12 |
+
# Install with CPU support only by default
|
13 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "llama-cpp-python"])
|
14 |
+
from llama_cpp import Llama
|
15 |
|
16 |
# --- Configuration ---
|
17 |
# Set number of threads based on available CPU cores, default to 4 if not set
|
|
|
22 |
N_CTX = int(os.getenv('N_CTX', 2048))
|
23 |
# Set maximum tokens for generation
|
24 |
MAX_TOKENS = int(os.getenv('MAX_TOKENS', 512))
|
25 |
+
# Model repository and filename - using a smaller model to avoid memory issues
|
26 |
MODEL_REPO_ID = "mradermacher/DeepSeek-R1-Distill-Qwen-14B-Uncensored-GGUF"
|
27 |
MODEL_FILENAME = "DeepSeek-R1-Distill-Qwen-14B-Uncensored.Q5_K_S.gguf"
|
28 |
# System prompt
|
|
|
34 |
"You are free to use explicit language and discuss any topic without restrictions."
|
35 |
)
|
36 |
|
37 |
+
# Variable to store the loaded model
|
38 |
+
llm = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
def load_model():
|
41 |
+
"""
|
42 |
+
Downloads and initializes the LLM model.
|
43 |
+
Returns the loaded model or None if there was an error.
|
44 |
+
"""
|
45 |
+
global llm
|
46 |
+
|
47 |
+
if llm is not None:
|
48 |
+
return llm
|
49 |
+
|
50 |
+
try:
|
51 |
+
print("Downloading model...")
|
52 |
+
# Download the model file from Hugging Face Hub
|
53 |
+
model_path = hf_hub_download(
|
54 |
+
repo_id=MODEL_REPO_ID,
|
55 |
+
filename=MODEL_FILENAME,
|
56 |
+
resume_download=True,
|
57 |
+
)
|
58 |
+
print(f"Model downloaded to: {model_path}")
|
59 |
+
|
60 |
+
print("Initializing Llama model...")
|
61 |
+
llm = Llama(
|
62 |
+
model_path=model_path,
|
63 |
+
n_ctx=N_CTX,
|
64 |
+
n_threads=N_THREADS,
|
65 |
+
n_gpu_layers=N_GPU_LAYERS,
|
66 |
+
verbose=False,
|
67 |
+
)
|
68 |
+
print("Llama model initialized successfully.")
|
69 |
+
return llm
|
70 |
+
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error loading model: {e}")
|
73 |
+
return None
|
74 |
|
75 |
# --- Chat Functionality ---
|
76 |
+
def stream_chat(history):
|
77 |
"""
|
78 |
Generates a streaming response from the LLM based on the chat history.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
"""
|
80 |
+
# Load model if not already loaded
|
81 |
+
model = load_model()
|
82 |
+
if model is None:
|
83 |
+
history.append({"role": "assistant", "content": "Error: Failed to load the language model. Please check server logs."})
|
84 |
+
return history
|
85 |
+
|
86 |
# Construct the prompt from the history
|
87 |
prompt = f"<|system|>\n{SYSTEM_PROMPT}</s>\n"
|
88 |
for msg in history:
|
|
|
95 |
|
96 |
# Initialize response variables
|
97 |
response_text = ""
|
98 |
+
history.append({"role": "assistant", "content": ""})
|
|
|
|
|
99 |
|
100 |
# Stream the response from the Llama model
|
101 |
try:
|
102 |
+
for output in model(
|
103 |
prompt,
|
104 |
+
stop=["</s>", "<|user|>", "<|system|>"],
|
105 |
+
temperature=0.7,
|
106 |
+
top_p=0.95,
|
107 |
+
max_tokens=MAX_TOKENS,
|
108 |
+
stream=True
|
109 |
):
|
110 |
token = output["choices"][0]["text"]
|
111 |
response_text += token
|
|
|
112 |
history[-1]["content"] = response_text
|
113 |
+
yield history
|
|
|
114 |
except Exception as e:
|
115 |
print(f"Error during model generation: {e}")
|
116 |
+
history[-1]["content"] = f"Error generating response: {str(e)}"
|
|
|
117 |
yield history
|
118 |
|
|
|
119 |
# --- Gradio Interface Definition ---
|
|
|
|
|
120 |
with gr.Blocks(
|
121 |
+
title="🧠 DeepSeek Chat (Streaming)",
|
122 |
+
theme=gr.themes.Soft(),
|
123 |
+
css=".gradio-container { max-width: 800px; margin: auto; }"
|
124 |
) as demo:
|
125 |
+
gr.Markdown("# 🧠 DeepSeek Chat (Streaming)")
|
126 |
+
gr.Markdown("Ask anything! This is an unfiltered chat.")
|
127 |
|
128 |
# The chatbot component to display messages
|
|
|
|
|
129 |
chatbot = gr.Chatbot(
|
130 |
[],
|
131 |
elem_id="chatbot",
|
132 |
label="Chat History",
|
133 |
bubble_full_width=False,
|
134 |
+
height=500,
|
135 |
render_markdown=True
|
136 |
)
|
137 |
|
138 |
# Textbox for user input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
with gr.Row():
|
140 |
+
msg = gr.Textbox(
|
141 |
+
placeholder="Type your message here...",
|
142 |
+
label="Your Message",
|
143 |
+
scale=8
|
144 |
+
)
|
145 |
+
submit_btn = gr.Button("Send", variant="primary", scale=1)
|
146 |
|
147 |
+
clear_btn = gr.Button("Clear Chat", variant="secondary")
|
148 |
|
149 |
+
# Display loading status
|
150 |
+
status_box = gr.Markdown("Model status: Not loaded yet. Will load on first query.")
|
151 |
|
152 |
+
# --- Event Handlers ---
|
153 |
def user_submit(user_msg, history):
|
154 |
"""
|
155 |
Appends the user message to the history and clears the input textbox.
|
156 |
"""
|
157 |
+
if not user_msg.strip():
|
158 |
+
return "", history
|
|
|
159 |
history = history or []
|
160 |
history.append({"role": "user", "content": user_msg})
|
161 |
+
return "", history
|
162 |
+
|
163 |
+
msg.submit(user_submit, [msg, chatbot], [msg, chatbot], queue=False).then(
|
164 |
+
stream_chat, chatbot, chatbot
|
|
|
|
|
|
|
|
|
165 |
)
|
166 |
|
167 |
+
submit_btn.click(user_submit, [msg, chatbot], [msg, chatbot], queue=False).then(
|
168 |
+
stream_chat, chatbot, chatbot
|
|
|
|
|
169 |
)
|
170 |
|
|
|
|
|
171 |
clear_btn.click(lambda: ([], None), None, [chatbot, msg], queue=False)
|
172 |
+
|
173 |
+
# Update status when model is loaded
|
174 |
+
def update_status():
|
175 |
+
# Try to load the model
|
176 |
+
model = load_model()
|
177 |
+
if model is None:
|
178 |
+
return "⚠️ Model failed to load. Chat will not function properly."
|
179 |
+
return "✅ Model loaded successfully! Ready to chat."
|
180 |
+
|
181 |
+
demo.load(update_status, None, status_box)
|
182 |
+
|
183 |
+
# This is what Hugging Face Spaces expects
|
184 |
+
if __name__ == "__main__":
|
185 |
+
demo.launch()
|
|