Spaces:
Runtime error
Runtime error
user
5fb352c
import math | |
import ldm.models.diffusion.ddim | |
import ldm.models.diffusion.plms | |
import numpy as np | |
import torch | |
from modules.shared import state | |
from modules import sd_samplers_common, prompt_parser, shared | |
samplers_data_compvis = [ | |
sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}), | |
sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}), | |
] | |
class VanillaStableDiffusionSampler: | |
def __init__(self, constructor, sd_model): | |
self.sampler = constructor(sd_model) | |
self.is_plms = hasattr(self.sampler, 'p_sample_plms') | |
self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim | |
self.mask = None | |
self.nmask = None | |
self.init_latent = None | |
self.sampler_noises = None | |
self.step = 0 | |
self.stop_at = None | |
self.eta = None | |
self.config = None | |
self.last_latent = None | |
self.conditioning_key = sd_model.model.conditioning_key | |
def number_of_needed_noises(self, p): | |
return 0 | |
def launch_sampling(self, steps, func): | |
state.sampling_steps = steps | |
state.sampling_step = 0 | |
try: | |
return func() | |
except sd_samplers_common.InterruptedException: | |
return self.last_latent | |
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): | |
if state.interrupted or state.skipped: | |
raise sd_samplers_common.InterruptedException | |
if self.stop_at is not None and self.step > self.stop_at: | |
raise sd_samplers_common.InterruptedException | |
# Have to unwrap the inpainting conditioning here to perform pre-processing | |
image_conditioning = None | |
if isinstance(cond, dict): | |
image_conditioning = cond["c_concat"][0] | |
cond = cond["c_crossattn"][0] | |
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0] | |
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) | |
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) | |
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers' | |
cond = tensor | |
# for DDIM, shapes must match, we can't just process cond and uncond independently; | |
# filling unconditional_conditioning with repeats of the last vector to match length is | |
# not 100% correct but should work well enough | |
if unconditional_conditioning.shape[1] < cond.shape[1]: | |
last_vector = unconditional_conditioning[:, -1:] | |
last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1]) | |
unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated]) | |
elif unconditional_conditioning.shape[1] > cond.shape[1]: | |
unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]] | |
if self.mask is not None: | |
img_orig = self.sampler.model.q_sample(self.init_latent, ts) | |
x_dec = img_orig * self.mask + self.nmask * x_dec | |
# Wrap the image conditioning back up since the DDIM code can accept the dict directly. | |
# Note that they need to be lists because it just concatenates them later. | |
if image_conditioning is not None: | |
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]} | |
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} | |
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) | |
if self.mask is not None: | |
self.last_latent = self.init_latent * self.mask + self.nmask * res[1] | |
else: | |
self.last_latent = res[1] | |
sd_samplers_common.store_latent(self.last_latent) | |
self.step += 1 | |
state.sampling_step = self.step | |
shared.total_tqdm.update() | |
return res | |
def initialize(self, p): | |
self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim | |
if self.eta != 0.0: | |
p.extra_generation_params["Eta DDIM"] = self.eta | |
for fieldname in ['p_sample_ddim', 'p_sample_plms']: | |
if hasattr(self.sampler, fieldname): | |
setattr(self.sampler, fieldname, self.p_sample_ddim_hook) | |
self.mask = p.mask if hasattr(p, 'mask') else None | |
self.nmask = p.nmask if hasattr(p, 'nmask') else None | |
def adjust_steps_if_invalid(self, p, num_steps): | |
if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'): | |
valid_step = 999 / (1000 // num_steps) | |
if valid_step == math.floor(valid_step): | |
return int(valid_step) + 1 | |
return num_steps | |
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): | |
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps) | |
steps = self.adjust_steps_if_invalid(p, steps) | |
self.initialize(p) | |
self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False) | |
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise) | |
self.init_latent = x | |
self.last_latent = x | |
self.step = 0 | |
# Wrap the conditioning models with additional image conditioning for inpainting model | |
if image_conditioning is not None: | |
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]} | |
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]} | |
samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)) | |
return samples | |
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): | |
self.initialize(p) | |
self.init_latent = None | |
self.last_latent = x | |
self.step = 0 | |
steps = self.adjust_steps_if_invalid(p, steps or p.steps) | |
# Wrap the conditioning models with additional image conditioning for inpainting model | |
# dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape | |
if image_conditioning is not None: | |
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]} | |
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]} | |
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0]) | |
return samples_ddim | |