Spaces:
Runtime error
Runtime error
user
5fb352c
import open_clip.tokenizer | |
import torch | |
from modules import sd_hijack_clip, devices | |
from modules.shared import opts | |
class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords): | |
def __init__(self, wrapped, hijack): | |
super().__init__(wrapped, hijack) | |
self.id_start = wrapped.config.bos_token_id | |
self.id_end = wrapped.config.eos_token_id | |
self.id_pad = wrapped.config.pad_token_id | |
self.comma_token = self.tokenizer.get_vocab().get(',', None) # alt diffusion doesn't have </w> bits for comma | |
def encode_with_transformers(self, tokens): | |
# there's no CLIP Skip here because all hidden layers have size of 1024 and the last one uses a | |
# trained layer to transform those 1024 into 768 for unet; so you can't choose which transformer | |
# layer to work with - you have to use the last | |
attention_mask = (tokens != self.id_pad).to(device=tokens.device, dtype=torch.int64) | |
features = self.wrapped(input_ids=tokens, attention_mask=attention_mask) | |
z = features['projection_state'] | |
return z | |
def encode_embedding_init_text(self, init_text, nvpt): | |
embedding_layer = self.wrapped.roberta.embeddings | |
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"] | |
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0) | |
return embedded | |