Spaces:
Runtime error
Runtime error
user
5fb352c
import torch | |
from packaging import version | |
from modules import devices | |
from modules.sd_hijack_utils import CondFunc | |
class TorchHijackForUnet: | |
""" | |
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match; | |
this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64 | |
""" | |
def __getattr__(self, item): | |
if item == 'cat': | |
return self.cat | |
if hasattr(torch, item): | |
return getattr(torch, item) | |
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) | |
def cat(self, tensors, *args, **kwargs): | |
if len(tensors) == 2: | |
a, b = tensors | |
if a.shape[-2:] != b.shape[-2:]: | |
a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest") | |
tensors = (a, b) | |
return torch.cat(tensors, *args, **kwargs) | |
th = TorchHijackForUnet() | |
# Below are monkey patches to enable upcasting a float16 UNet for float32 sampling | |
def apply_model(orig_func, self, x_noisy, t, cond, **kwargs): | |
if isinstance(cond, dict): | |
for y in cond.keys(): | |
cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]] | |
with devices.autocast(): | |
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float() | |
class GELUHijack(torch.nn.GELU, torch.nn.Module): | |
def __init__(self, *args, **kwargs): | |
torch.nn.GELU.__init__(self, *args, **kwargs) | |
def forward(self, x): | |
if devices.unet_needs_upcast: | |
return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet) | |
else: | |
return torch.nn.GELU.forward(self, x) | |
ddpm_edit_hijack = None | |
def hijack_ddpm_edit(): | |
global ddpm_edit_hijack | |
if not ddpm_edit_hijack: | |
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond) | |
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond) | |
ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model, unet_needs_upcast) | |
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast | |
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast) | |
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast) | |
if version.parse(torch.__version__) <= version.parse("1.13.1"): | |
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast) | |
CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast) | |
CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU) | |
first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16 | |
first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs) | |
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond) | |
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond) | |
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond) | |