Spaces:
Runtime error
Runtime error
user
5fb352c
import math | |
import sys | |
import traceback | |
import psutil | |
import torch | |
from torch import einsum | |
from ldm.util import default | |
from einops import rearrange | |
from modules import shared, errors, devices | |
from modules.hypernetworks import hypernetwork | |
from .sub_quadratic_attention import efficient_dot_product_attention | |
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: | |
try: | |
import xformers.ops | |
shared.xformers_available = True | |
except Exception: | |
print("Cannot import xformers", file=sys.stderr) | |
print(traceback.format_exc(), file=sys.stderr) | |
def get_available_vram(): | |
if shared.device.type == 'cuda': | |
stats = torch.cuda.memory_stats(shared.device) | |
mem_active = stats['active_bytes.all.current'] | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_total = mem_free_cuda + mem_free_torch | |
return mem_free_total | |
else: | |
return psutil.virtual_memory().available | |
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion | |
def split_cross_attention_forward_v1(self, x, context=None, mask=None): | |
h = self.heads | |
q_in = self.to_q(x) | |
context = default(context, x) | |
context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) | |
k_in = self.to_k(context_k) | |
v_in = self.to_v(context_v) | |
del context, context_k, context_v, x | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) | |
del q_in, k_in, v_in | |
dtype = q.dtype | |
if shared.opts.upcast_attn: | |
q, k, v = q.float(), k.float(), v.float() | |
with devices.without_autocast(disable=not shared.opts.upcast_attn): | |
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
for i in range(0, q.shape[0], 2): | |
end = i + 2 | |
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) | |
s1 *= self.scale | |
s2 = s1.softmax(dim=-1) | |
del s1 | |
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) | |
del s2 | |
del q, k, v | |
r1 = r1.to(dtype) | |
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | |
del r1 | |
return self.to_out(r2) | |
# taken from https://github.com/Doggettx/stable-diffusion and modified | |
def split_cross_attention_forward(self, x, context=None, mask=None): | |
h = self.heads | |
q_in = self.to_q(x) | |
context = default(context, x) | |
context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) | |
k_in = self.to_k(context_k) | |
v_in = self.to_v(context_v) | |
dtype = q_in.dtype | |
if shared.opts.upcast_attn: | |
q_in, k_in, v_in = q_in.float(), k_in.float(), v_in if v_in.device.type == 'mps' else v_in.float() | |
with devices.without_autocast(disable=not shared.opts.upcast_attn): | |
k_in = k_in * self.scale | |
del context, x | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) | |
del q_in, k_in, v_in | |
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
mem_free_total = get_available_vram() | |
gb = 1024 ** 3 | |
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() | |
modifier = 3 if q.element_size() == 2 else 2.5 | |
mem_required = tensor_size * modifier | |
steps = 1 | |
if mem_required > mem_free_total: | |
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) | |
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " | |
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") | |
if steps > 64: | |
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 | |
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' | |
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') | |
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | |
for i in range(0, q.shape[1], slice_size): | |
end = i + slice_size | |
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) | |
s2 = s1.softmax(dim=-1, dtype=q.dtype) | |
del s1 | |
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) | |
del s2 | |
del q, k, v | |
r1 = r1.to(dtype) | |
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) | |
del r1 | |
return self.to_out(r2) | |
# -- Taken from https://github.com/invoke-ai/InvokeAI and modified -- | |
mem_total_gb = psutil.virtual_memory().total // (1 << 30) | |
def einsum_op_compvis(q, k, v): | |
s = einsum('b i d, b j d -> b i j', q, k) | |
s = s.softmax(dim=-1, dtype=s.dtype) | |
return einsum('b i j, b j d -> b i d', s, v) | |
def einsum_op_slice_0(q, k, v, slice_size): | |
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
for i in range(0, q.shape[0], slice_size): | |
end = i + slice_size | |
r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end]) | |
return r | |
def einsum_op_slice_1(q, k, v, slice_size): | |
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) | |
for i in range(0, q.shape[1], slice_size): | |
end = i + slice_size | |
r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v) | |
return r | |
def einsum_op_mps_v1(q, k, v): | |
if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096 | |
return einsum_op_compvis(q, k, v) | |
else: | |
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1])) | |
if slice_size % 4096 == 0: | |
slice_size -= 1 | |
return einsum_op_slice_1(q, k, v, slice_size) | |
def einsum_op_mps_v2(q, k, v): | |
if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16: | |
return einsum_op_compvis(q, k, v) | |
else: | |
return einsum_op_slice_0(q, k, v, 1) | |
def einsum_op_tensor_mem(q, k, v, max_tensor_mb): | |
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20) | |
if size_mb <= max_tensor_mb: | |
return einsum_op_compvis(q, k, v) | |
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length() | |
if div <= q.shape[0]: | |
return einsum_op_slice_0(q, k, v, q.shape[0] // div) | |
return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1)) | |
def einsum_op_cuda(q, k, v): | |
stats = torch.cuda.memory_stats(q.device) | |
mem_active = stats['active_bytes.all.current'] | |
mem_reserved = stats['reserved_bytes.all.current'] | |
mem_free_cuda, _ = torch.cuda.mem_get_info(q.device) | |
mem_free_torch = mem_reserved - mem_active | |
mem_free_total = mem_free_cuda + mem_free_torch | |
# Divide factor of safety as there's copying and fragmentation | |
return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20)) | |
def einsum_op(q, k, v): | |
if q.device.type == 'cuda': | |
return einsum_op_cuda(q, k, v) | |
if q.device.type == 'mps': | |
if mem_total_gb >= 32 and q.shape[0] % 32 != 0 and q.shape[0] * q.shape[1] < 2**18: | |
return einsum_op_mps_v1(q, k, v) | |
return einsum_op_mps_v2(q, k, v) | |
# Smaller slices are faster due to L2/L3/SLC caches. | |
# Tested on i7 with 8MB L3 cache. | |
return einsum_op_tensor_mem(q, k, v, 32) | |
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) | |
k = self.to_k(context_k) | |
v = self.to_v(context_v) | |
del context, context_k, context_v, x | |
dtype = q.dtype | |
if shared.opts.upcast_attn: | |
q, k, v = q.float(), k.float(), v if v.device.type == 'mps' else v.float() | |
with devices.without_autocast(disable=not shared.opts.upcast_attn): | |
k = k * self.scale | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
r = einsum_op(q, k, v) | |
r = r.to(dtype) | |
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h)) | |
# -- End of code from https://github.com/invoke-ai/InvokeAI -- | |
# Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1 | |
# The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface | |
def sub_quad_attention_forward(self, x, context=None, mask=None): | |
assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor." | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) | |
k = self.to_k(context_k) | |
v = self.to_v(context_v) | |
del context, context_k, context_v, x | |
q = q.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) | |
k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) | |
v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1) | |
dtype = q.dtype | |
if shared.opts.upcast_attn: | |
q, k = q.float(), k.float() | |
x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) | |
x = x.to(dtype) | |
x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2) | |
out_proj, dropout = self.to_out | |
x = out_proj(x) | |
x = dropout(x) | |
return x | |
def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True): | |
bytes_per_token = torch.finfo(q.dtype).bits//8 | |
batch_x_heads, q_tokens, _ = q.shape | |
_, k_tokens, _ = k.shape | |
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens | |
if chunk_threshold is None: | |
chunk_threshold_bytes = int(get_available_vram() * 0.9) if q.device.type == 'mps' else int(get_available_vram() * 0.7) | |
elif chunk_threshold == 0: | |
chunk_threshold_bytes = None | |
else: | |
chunk_threshold_bytes = int(0.01 * chunk_threshold * get_available_vram()) | |
if kv_chunk_size_min is None and chunk_threshold_bytes is not None: | |
kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2])) | |
elif kv_chunk_size_min == 0: | |
kv_chunk_size_min = None | |
if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes: | |
# the big matmul fits into our memory limit; do everything in 1 chunk, | |
# i.e. send it down the unchunked fast-path | |
query_chunk_size = q_tokens | |
kv_chunk_size = k_tokens | |
with devices.without_autocast(disable=q.dtype == v.dtype): | |
return efficient_dot_product_attention( | |
q, | |
k, | |
v, | |
query_chunk_size=q_chunk_size, | |
kv_chunk_size=kv_chunk_size, | |
kv_chunk_size_min = kv_chunk_size_min, | |
use_checkpoint=use_checkpoint, | |
) | |
def get_xformers_flash_attention_op(q, k, v): | |
if not shared.cmd_opts.xformers_flash_attention: | |
return None | |
try: | |
flash_attention_op = xformers.ops.MemoryEfficientAttentionFlashAttentionOp | |
fw, bw = flash_attention_op | |
if fw.supports(xformers.ops.fmha.Inputs(query=q, key=k, value=v, attn_bias=None)): | |
return flash_attention_op | |
except Exception as e: | |
errors.display_once(e, "enabling flash attention") | |
return None | |
def xformers_attention_forward(self, x, context=None, mask=None): | |
h = self.heads | |
q_in = self.to_q(x) | |
context = default(context, x) | |
context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context) | |
k_in = self.to_k(context_k) | |
v_in = self.to_v(context_v) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) | |
del q_in, k_in, v_in | |
dtype = q.dtype | |
if shared.opts.upcast_attn: | |
q, k = q.float(), k.float() | |
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v)) | |
out = out.to(dtype) | |
out = rearrange(out, 'b n h d -> b n (h d)', h=h) | |
return self.to_out(out) | |
def cross_attention_attnblock_forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q1 = self.q(h_) | |
k1 = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q1.shape | |
q2 = q1.reshape(b, c, h*w) | |
del q1 | |
q = q2.permute(0, 2, 1) # b,hw,c | |
del q2 | |
k = k1.reshape(b, c, h*w) # b,c,hw | |
del k1 | |
h_ = torch.zeros_like(k, device=q.device) | |
mem_free_total = get_available_vram() | |
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() | |
mem_required = tensor_size * 2.5 | |
steps = 1 | |
if mem_required > mem_free_total: | |
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) | |
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] | |
for i in range(0, q.shape[1], slice_size): | |
end = i + slice_size | |
w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w2 = w1 * (int(c)**(-0.5)) | |
del w1 | |
w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype) | |
del w2 | |
# attend to values | |
v1 = v.reshape(b, c, h*w) | |
w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
del w3 | |
h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
del v1, w4 | |
h2 = h_.reshape(b, c, h, w) | |
del h_ | |
h3 = self.proj_out(h2) | |
del h2 | |
h3 += x | |
return h3 | |
def xformers_attnblock_forward(self, x): | |
try: | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
b, c, h, w = q.shape | |
q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) | |
dtype = q.dtype | |
if shared.opts.upcast_attn: | |
q, k = q.float(), k.float() | |
q = q.contiguous() | |
k = k.contiguous() | |
v = v.contiguous() | |
out = xformers.ops.memory_efficient_attention(q, k, v, op=get_xformers_flash_attention_op(q, k, v)) | |
out = out.to(dtype) | |
out = rearrange(out, 'b (h w) c -> b c h w', h=h) | |
out = self.proj_out(out) | |
return x + out | |
except NotImplementedError: | |
return cross_attention_attnblock_forward(self, x) | |
def sub_quad_attnblock_forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
b, c, h, w = q.shape | |
q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) | |
q = q.contiguous() | |
k = k.contiguous() | |
v = v.contiguous() | |
out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training) | |
out = rearrange(out, 'b (h w) c -> b c h w', h=h) | |
out = self.proj_out(out) | |
return x + out | |