uruguayai commited on
Commit
0ba9dcb
·
verified ·
1 Parent(s): 53f544e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -10
app.py CHANGED
@@ -1,21 +1,40 @@
1
  import torch
2
- from transformers import AutoModel # ajusta si usas otro framework/modelo
 
3
 
4
- # Define paths to the files
5
- MODEL_PATH = "/uruguayai/fooocus/juggernautXL_v8Rundiffusion.safetensors"
6
- INTERPOSER_PATH = "/uruguayai/fooocus/xl-to-v1_interposer-v4.0.safetensors"
7
- VAE_PATH = "/uruguayai/fooocus/vaeapp_sd15.pt"
8
- EXPANSION_PATH = "/uruguayai/fooocus/fooocus_expansion.bin"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def load_model():
11
- # Example of loading a model; adjust based on your specific setup
12
- model = torch.load(MODEL_PATH)
13
- # If you have specific loading functions or modules, call them here
 
 
 
 
 
14
  return model
15
 
16
  def main():
17
  model = load_model()
18
- # Here you can add your inference logic, or serve using Gradio or FastAPI
19
  print("Model loaded successfully!")
20
 
21
  if __name__ == "__main__":
 
1
  import torch
2
+ import os
3
+ import requests
4
 
5
+ # Definir las URLs de los archivos en el dataset de Hugging Face
6
+ MODEL_URL = "https://huggingface.co/datasets/uruguayai/fooocus/resolve/main/juggernautXL_v8Rundiffusion.safetensors"
7
+ INTERPOSER_URL = "https://huggingface.co/datasets/uruguayai/fooocus/resolve/main/xl-to-v1_interposer-v4.0.safetensors"
8
+ VAE_URL = "https://huggingface.co/datasets/uruguayai/fooocus/resolve/main/vaeapp_sd15.pt"
9
+ EXPANSION_URL = "https://huggingface.co/datasets/uruguayai/fooocus/resolve/main/fooocus_expansion.bin"
10
+
11
+ # Definir las rutas locales donde se guardarán los archivos
12
+ MODEL_PATH = "/home/user/app/juggernautXL_v8Rundiffusion.safetensors"
13
+ INTERPOSER_PATH = "/home/user/app/xl-to-v1_interposer-v4.0.safetensors"
14
+ VAE_PATH = "/home/user/app/vaeapp_sd15.pt"
15
+ EXPANSION_PATH = "/home/user/app/fooocus_expansion.bin"
16
+
17
+ def download_file(url, path):
18
+ """Descarga un archivo desde una URL si no está presente en la ruta especificada."""
19
+ if not os.path.exists(path):
20
+ response = requests.get(url)
21
+ with open(path, 'wb') as f:
22
+ f.write(response.content)
23
+ print(f"Downloaded {path}")
24
 
25
  def load_model():
26
+ # Descargar los archivos necesarios
27
+ download_file(MODEL_URL, MODEL_PATH)
28
+ download_file(INTERPOSER_URL, INTERPOSER_PATH)
29
+ download_file(VAE_URL, VAE_PATH)
30
+ download_file(EXPANSION_URL, EXPANSION_PATH)
31
+
32
+ # Cargar el modelo; asegúrate de usar weights_only=True por razones de seguridad
33
+ model = torch.load(MODEL_PATH, weights_only=True)
34
  return model
35
 
36
  def main():
37
  model = load_model()
 
38
  print("Model loaded successfully!")
39
 
40
  if __name__ == "__main__":