app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
3 |
+
from peft import PeftModel, PeftConfig
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# === Load Tokenizer ===
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
8 |
+
tokenizer.pad_token = tokenizer.eos_token
|
9 |
+
|
10 |
+
# === Load Model + QLoRA Adapter ===
|
11 |
+
checkpoint_dir = "umangshikarvar/sentiment-gpt-neo-qlora" # Update if needed
|
12 |
+
peft_config = PeftConfig.from_pretrained(checkpoint_dir)
|
13 |
+
base_model = AutoModelForCausalLM.from_pretrained(peft_config.base_model_name_or_path, torch_dtype=torch.float16)
|
14 |
+
model = PeftModel.from_pretrained(base_model, checkpoint_dir)
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
model.eval().to(device)
|
17 |
+
|
18 |
+
# === Define Custom LogitsProcessor ===
|
19 |
+
class RestrictVocabLogitsProcessor(LogitsProcessor):
|
20 |
+
def __init__(self, allowed_token_ids):
|
21 |
+
self.allowed_token_ids = allowed_token_ids
|
22 |
+
|
23 |
+
def __call__(self, input_ids, scores):
|
24 |
+
mask = torch.full_like(scores, float("-inf"))
|
25 |
+
mask[:, self.allowed_token_ids] = scores[:, self.allowed_token_ids]
|
26 |
+
return mask
|
27 |
+
|
28 |
+
# === Set Allowed Sentiment Tokens ===
|
29 |
+
sentiment_words = ["Positive", "Negative", "Neutral"]
|
30 |
+
allowed_ids = [
|
31 |
+
tokenizer(word, add_special_tokens=False)["input_ids"][0]
|
32 |
+
for word in sentiment_words
|
33 |
+
]
|
34 |
+
logits_processor = LogitsProcessorList([
|
35 |
+
RestrictVocabLogitsProcessor(allowed_ids)
|
36 |
+
])
|
37 |
+
|
38 |
+
# === Inference Function ===
|
39 |
+
def predict_sentiment(tweet):
|
40 |
+
prompt = f"Tweet: {tweet}\nSentiment:"
|
41 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
42 |
+
|
43 |
+
outputs = model.generate(
|
44 |
+
**inputs,
|
45 |
+
max_new_tokens=1,
|
46 |
+
do_sample=False,
|
47 |
+
logits_processor=logits_processor
|
48 |
+
)
|
49 |
+
|
50 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
51 |
+
prediction = response.replace(prompt, "").strip().split()[0]
|
52 |
+
|
53 |
+
if prediction.lower().startswith("pos"):
|
54 |
+
return "Positive"
|
55 |
+
elif prediction.lower().startswith("neg"):
|
56 |
+
return "Negative"
|
57 |
+
else:
|
58 |
+
return "Neutral"
|
59 |
+
|
60 |
+
# === Gradio Interface ===
|
61 |
+
gr.Interface(
|
62 |
+
fn=predict_sentiment,
|
63 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter the text", label="Statement"),
|
64 |
+
outputs="text",
|
65 |
+
title="Sentiment Classifier",
|
66 |
+
description="Classifies the sentiment of a statement, as Positive, Negative, or Neutral."
|
67 |
+
).launch(share=True)
|