import gradio as gr import numpy as np import random from peft import PeftModel, LoraConfig # import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" # Replace to the model you would like to use if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) #pipe.unet.load_adapter("um235/cartoon_cat_stickers") pipe.unet = PeftModel.from_pretrained(pipe.unet,"um235/cartoon_cat_stickers") pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # @spaces.GPU #[uncomment to use ZeroGPU] def infer( model_id, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lscale, controlnet_enabled, control_strength, control_mode, control_image, ip_adapter_enabled, ip_adapter_scale, ip_adapter_image, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) if (model_repo_id=="stable-diffusion-v1-5/stable-diffusion-v1-5"): pipe.unet = PeftModel.from_pretrained(pipe.unet,"um235/cartoon_cat_stickers") pipe.scale_lora(lscale) pipe = pipe.to(device) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "Sticker, cartoon-style cat character with soft yellow fur. A gentle cat with expressive eyes that shine with a sad, emotional look. The cat, with a small pink nose and a flower on its head, appears to be crying, with blue teardrops around its eyes, giving the sticker a simple yet poignant design.", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # UM235 DIFFUSION Space") model_id_input = gr.Dropdown( label="Choose Model", choices=[ "stable-diffusion-v1-5/stable-diffusion-v1-5", "CompVis/stable-diffusion-v1-4", "stable-diffusion-v1-5/stable-diffusion-v1-5 with lora", ], value="stable-diffusion-v1-5/stable-diffusion-v1-5 with lora", show_label=True, type="value", ) with gr.Row(): lscale = gr.Slider( label="Lora scale", minimum=0, maximum=2, step=0.05, value=1, # Replace with defaults that work for your model ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) with gr.Accordion("ControlNet Settings", open=False): controlnet_enabled = gr.Checkbox(label="Enable ControlNet", value=False) with gr.Row(): control_strength = gr.Slider( label="ControlNet scale", minimum=0.0, maximum=1.0, step=0.05, value=0.75, visible=False, ) control_mode = gr.Dropdown( label="ControlNet Mode", choices=["edge_detection", "pose_estimation", "depth_estimation"], value="edge_detection", visible=False, ) control_image = gr.Image(label="ControlNet Image", type="pil", visible=False) with gr.Accordion("IP-Adapter Settings", open=False): ip_adapter_enabled = gr.Checkbox(label="Enable IP-Adapter", value=False) with gr.Row(): ip_adapter_scale = gr.Slider( label="IP-Adapter Scale", minimum=0.0, maximum=2.0, step=0.05, value=1.0, visible=False, ) ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil", visible=False) with gr.Row(): run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.0, # Replace with defaults that work for your model ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=20, # Replace with defaults that work for your model ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ model_id_input, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lscale, controlnet_enabled, control_strength, control_mode, control_image, ip_adapter_enabled, ip_adapter_scale, ip_adapter_image, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()