File size: 7,741 Bytes
7c5aa99
f94c5ea
0430da2
4a4435c
3d37920
0430da2
4a4435c
0430da2
f94c5ea
4a4435c
5d41434
f94c5ea
5d41434
 
 
 
3d37920
 
 
 
5d41434
0430da2
4a4435c
3d37920
4a4435c
3d37920
4a4435c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c5aa99
0430da2
a9ae246
3d37920
a9ae246
 
 
3d37920
a9ae246
 
 
 
 
3d37920
1c51cb8
3d37920
 
 
f94c5ea
 
 
3d37920
 
 
 
f94c5ea
 
 
5d41434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d37920
 
 
f94c5ea
3d37920
 
 
 
f94c5ea
 
5d41434
f94c5ea
5d41434
 
f94c5ea
 
 
3d37920
 
9d049fd
f94c5ea
3d37920
 
 
 
5d41434
 
9d049fd
3d37920
 
 
 
 
f94c5ea
3d37920
f94c5ea
 
 
3d37920
f94c5ea
 
 
 
 
 
 
 
 
3d37920
0430da2
4a4435c
3d37920
9d049fd
0430da2
5d41434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d37920
5d41434
 
 
 
 
 
 
0044b58
3d37920
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# -*- coding: utf-8 -*-
import os
import gradio as gr
import requests
import tempfile
from io import BytesIO
import matplotlib.pyplot as plt
from datasets import load_dataset
from train_tokenizer import train_tokenizer
from tokenizers import Tokenizer
from langdetect import detect, DetectorFactory

# Για επαναληψιμότητα στο langdetect
DetectorFactory.seed = 0

# Ρυθμίσεις checkpointing και αποθήκευσης του tokenizer
CHECKPOINT_FILE = "checkpoint.txt"
TOKENIZER_DIR = "tokenizer_model"
TOKENIZER_FILE = os.path.join(TOKENIZER_DIR, "tokenizer.json")
CHUNK_SIZE = 1000  # Μέγεθος batch για checkpoint
MAX_SAMPLES = 3000000  # Όριο δειγμάτων (μπορείς να το προσαρμόσεις)

def fetch_splits(dataset_name):
    """Ανάκτηση των splits του dataset από το Hugging Face."""
    try:
        response = requests.get(f"https://datasets-server.huggingface.co/splits?dataset={dataset_name}", timeout=10)
        response.raise_for_status()
        data = response.json()
        
        splits_info = {}
        for split in data['splits']:
            config = split['config']
            split_name = split['split']
            if config not in splits_info:
                splits_info[config] = []
            splits_info[config].append(split_name)
        
        return {
            "splits": splits_info,
            "viewer_template": f"https://huggingface.co/datasets/{dataset_name}/embed/viewer/{{config}}/{{split}}"
        }
    except Exception as e:
        raise gr.Error(f"Σφάλμα κατά την ανάκτηση των splits: {str(e)}")

def create_iterator(dataset_name, configs, split):
    """Φορτώνει το dataset και αποδίδει τα κείμενα ως iterator."""
    configs_list = [c.strip() for c in configs.split(",") if c.strip()]
    for config in configs_list:
        try:
            dataset = load_dataset(dataset_name, name=config, split=split, streaming=True)
            for example in dataset:
                text = example.get('text', '')
                if text:
                    yield text
        except Exception as e:
            print(f"⚠️ Σφάλμα φόρτωσης dataset για config {config}: {e}")

def append_to_checkpoint(texts):
    """Αποθήκευση δεδομένων στο αρχείο checkpoint."""
    with open(CHECKPOINT_FILE, "a", encoding="utf-8") as f:
        for t in texts:
            f.write(t + "\n")

def load_checkpoint():
    """Φόρτωση δεδομένων από το checkpoint αν υπάρχει."""
    if os.path.exists(CHECKPOINT_FILE):
        with open(CHECKPOINT_FILE, "r", encoding="utf-8") as f:
            return f.read().splitlines()
    return []

def analyze_checkpoint(num_samples=1000):
    """
    Διαβάζει τα πρώτα num_samples δείγματα από το checkpoint και επιστρέφει το ποσοστό γλωσσών.
    """
    if not os.path.exists(CHECKPOINT_FILE):
        return "Το αρχείο checkpoint δεν υπάρχει."
    
    with open(CHECKPOINT_FILE, "r", encoding="utf-8") as f:
        lines = f.read().splitlines()
    
    sample_lines = lines[:num_samples] if len(lines) >= num_samples else lines
    
    language_counts = {}
    total = 0
    for line in sample_lines:
        try:
            lang = detect(line)
            language_counts[lang] = language_counts.get(lang, 0) + 1
            total += 1
        except Exception as e:
            continue
    
    if total == 0:
        return "Δεν βρέθηκαν έγκυρα δείγματα για ανάλυση."
    
    report = "Αποτελέσματα Ανάλυσης:\n"
    for lang, count in language_counts.items():
        report += f"Γλώσσα {lang}: {count/total*100:.2f}%\n"
    
    return report

def train_and_test(dataset_name, configs, split, vocab_size, min_freq, test_text):
    """Εκπαίδευση του tokenizer και δοκιμή του."""
    print("🚀 Ξεκινά η διαδικασία εκπαίδευσης...")
    
    all_texts = load_checkpoint()
    total_processed = len(all_texts)
    print(f"📌 Υπάρχουν ήδη {total_processed} δείγματα στο checkpoint.")

    dataset_iterator = create_iterator(dataset_name, configs, split)
    new_texts = []
    
    for text in dataset_iterator:
        if total_processed >= MAX_SAMPLES:
            break  # Διακοπή εάν ξεπεραστεί το όριο
        new_texts.append(text)
        total_processed += 1
        if len(new_texts) >= CHUNK_SIZE:
            append_to_checkpoint(new_texts)
            print(f"✅ Αποθηκεύτηκαν {total_processed} δείγματα στο checkpoint.")
            new_texts = []
    
    if new_texts:
        append_to_checkpoint(new_texts)
        print(f"✅ Τελικό batch αποθηκεύτηκε ({total_processed} δείγματα).")

    print("🚀 Η αποθήκευση δεδομένων ολοκληρώθηκε! Ξεκινάει η εκπαίδευση του tokenizer...")
    
    # Εκπαίδευση του tokenizer
    all_texts = load_checkpoint()
    tokenizer = train_tokenizer(all_texts, vocab_size, min_freq, TOKENIZER_DIR)

    # Φόρτωση εκπαιδευμένου tokenizer
    trained_tokenizer = Tokenizer.from_file(TOKENIZER_FILE)
    
    # Δοκιμή
    encoded = trained_tokenizer.encode(test_text)
    decoded = trained_tokenizer.decode(encoded.ids)
    
    # Γράφημα κατανομής tokens
    token_lengths = [len(t) for t in encoded.tokens]
    fig = plt.figure()
    plt.hist(token_lengths, bins=20)
    plt.xlabel('Μήκος Token')
    plt.ylabel('Συχνότητα')
    img_buffer = BytesIO()
    plt.savefig(img_buffer, format='png')
    plt.close()
    
    return f"✅ Εκπαίδευση ολοκληρώθηκε!\nΑποθηκεύτηκε στον φάκελο: {TOKENIZER_DIR}", decoded, img_buffer.getvalue()

# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("## Wikipedia Tokenizer Trainer with Checkpointing")
    
    with gr.Row():
        with gr.Column():
            dataset_name = gr.Textbox(value="wikimedia/wikipedia", label="Dataset Name")
            configs = gr.Textbox(value="20231101.el,20231101.en", label="Configs")
            split = gr.Dropdown(choices=["train"], value="train", label="Split")
            vocab_size = gr.Slider(20000, 100000, value=50000, label="Vocabulary Size")
            min_freq = gr.Slider(1, 100, value=3, label="Minimum Frequency")
            test_text = gr.Textbox(value="Η Ακρόπολη είναι σύμβολο της αρχαίας Ελλάδας.", label="Test Text")
            train_btn = gr.Button("Train")
            analyze_btn = gr.Button("Analyze Samples")
        with gr.Column():
            progress = gr.Textbox(label="Progress", interactive=False, lines=10)
            results_text = gr.Textbox(label="Test Decoded Text", interactive=False)
            results_plot = gr.Image(label="Token Length Distribution")
            # Έλεγχος ύπαρξης του tokenizer για download
            initial_file_value = TOKENIZER_FILE if os.path.exists(TOKENIZER_FILE) else None
            download_button = gr.File(label="Download Tokenizer", value=initial_file_value)

    train_btn.click(train_and_test, 
                    inputs=[dataset_name, configs, split, vocab_size, min_freq, test_text],
                    outputs=[progress, results_text, results_plot])
    
    analyze_btn.click(fn=lambda: analyze_checkpoint(1000), 
                      inputs=[], 
                      outputs=progress)

demo.launch()