File size: 9,137 Bytes
9e0ae3c
c6f8a21
 
 
 
 
 
 
 
 
 
 
 
 
 
9e0ae3c
c6f8a21
 
 
9b25fd9
c6f8a21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b25fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f8a21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e0ae3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f8a21
 
 
 
48c3d72
9b25fd9
 
 
 
 
9e0ae3c
 
 
 
9b25fd9
 
 
9e0ae3c
9b25fd9
 
9e0ae3c
 
9b25fd9
9e0ae3c
 
 
9b25fd9
9e0ae3c
 
 
 
 
c6f8a21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import time
import urllib.request
from urllib.parse import quote
from seleniumbase import SB
import markdownify
from bs4 import BeautifulSoup
from requests_html import HTMLSession
import html2text
import re
from openai import OpenAI
import tiktoken
from zenrows import ZenRowsClient
import requests
import os
from dotenv import load_dotenv
from threading import Thread

load_dotenv()
ZENROWS_KEY = os.getenv('ZENROWS_KEY')
you_key = os.getenv("YOU_API_KEY")
client = OpenAI()


def get_fast_url_source(url):
    session = HTMLSession()
    r = session.get(url)
    return r.text


def convert_html_to_text(html):
    h = html2text.HTML2Text()
    h.body_width = 0  # Disable line wrapping
    text = h.handle(html)
    text = re.sub(r'\n\s*', '', text)
    text = re.sub(r'\* \\', '', text)
    " ".join(text.split())
    return text


def get_google_search_url(query):
    url = 'https://www.google.com/search?q=' + quote(query)
    # Perform the request
    request = urllib.request.Request(url)

    # Set a normal User Agent header, otherwise Google will block the request.
    request.add_header('User-Agent',
                       'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36')
    raw_response = urllib.request.urlopen(request).read()

    # Read the repsonse as a utf-8 string
    html = raw_response.decode("utf-8")

    # The code to get the html contents here.
    soup = BeautifulSoup(html, 'html.parser')

    # Find all the search result divs
    divs = soup.select("#search div.g")
    # print(divs)
    url = []
    for div in divs:
        # Search for a h3 tag
        results = div.select("h3")
        urls = div.select('a')

        # Check if we have found a result
        # if (len(results) >= 1):
        #     # Print the title
        #     h3 = results[0]
        #     print(h3.get_text())

        url.append(urls[0]['href'])
    return url


def format_text(text):
    soup = BeautifulSoup(text, 'html.parser')
    results = soup.find_all(['p', 'h1', 'h2', 'span'])
    text = ''
    for key, result in enumerate(results):
        if key % 2 == 0:
            text = text + str(result) + '  '
        else:
            text = text + str(result) + '  '
    return text


def get_page_source_selenium_base(url):
    with SB(uc_cdp=True, guest_mode=True, headless=True) as sb:
        sb.open(url)
        sb.sleep(5)
        page_source = sb.driver.get_page_source()
    return page_source


def num_tokens_from_string(string: str, encoding_name: str) -> int:
    encoding = tiktoken.get_encoding(encoding_name)
    # encoding = tiktoken.encoding_for_model(encoding_name)
    num_tokens = len(encoding.encode(string))
    return num_tokens


def encoding_getter(encoding_type: str):
    """
    Returns the appropriate encoding based on the given encoding type (either an encoding string or a model name).
    """
    if "k_base" in encoding_type:
        return tiktoken.get_encoding(encoding_type)
    else:
        return tiktoken.encoding_for_model(encoding_type)


def tokenizer(string: str, encoding_type: str) -> list:
    """
    Returns the tokens in a text string using the specified encoding.
    """
    encoding = encoding_getter(encoding_type)
    tokens = encoding.encode(string)
    return tokens


def token_counter(string: str, encoding_type: str) -> int:
    """
    Returns the number of tokens in a text string using the specified encoding.
    """
    num_tokens = len(tokenizer(string, encoding_type))
    return num_tokens


def format_output(text):
    page_source = format_text(text)
    page_source = markdownify.markdownify(page_source)
    # page_source = convert_html_to_text(page_source)
    page_source = " ".join(page_source.split())
    return page_source


def clean_text(text):
    # Remove URLs
    text = re.sub(r'http[s]?://\S+', '', text)

    # Remove special characters and punctuation (keep only letters, numbers, and basic punctuation)
    text = re.sub(r'[^a-zA-Z0-9\s,.!?-]', '', text)

    # Normalize whitespace
    text = re.sub(r'\s+', ' ', text).strip()

    return text


def call_open_ai(system_prompt, max_tokens=800, stream=False):
    messages = [
        {
            "role": "user",
            "content": system_prompt
        }
    ]

    stream = client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=messages,
        temperature=0,
        max_tokens=max_tokens,
        top_p=0,
        frequency_penalty=0,
        presence_penalty=0,
        stream=stream
    )
    return stream.choices[0].message.content


def url_summary(text, question):
    system_prompt = """
        Summarize the given text, please add all the important topics and numerical data.

While summarizing please keep this question in mind.
question:- {question}

text:
{text}
        """.format(question=question, text=text)
    return call_open_ai(system_prompt=system_prompt, max_tokens=800)


def get_google_search_query(question):
    system_prompt = """
        convert this question to the Google search query and return only query.
        question:- {question}
        """.format(question=question)

    return call_open_ai(system_prompt=system_prompt, max_tokens=50)


def is_urlfile(url):
    # Check if online file exists
    try:
        r = urllib.request.urlopen(url)  # response
        return r.getcode() == 200
    except urllib.request.HTTPError:
        return False


def check_url_pdf_file(url):
    r = requests.get(url)
    content_type = r.headers.get('content-type')

    if 'application/pdf' in content_type:
        return True
    else:
        return False


def get_ai_snippets_for_query(query, num):
    headers = {"X-API-Key": you_key}
    params = {"query": query}
    return requests.get(
        f"https://api.ydc-index.io/search?query={query}&num_web_results={num}",
        params=params,
        headers=headers,
    ).json().get('hits')


def get_web_search_you(query, num):
    docs = get_ai_snippets_for_query(query, num)
    markdown = ""
    for doc in docs:
        for key, value in doc.items():
            if key == 'snippets':
                markdown += f"{key}:\n"
                for snippet in value:
                    markdown += f"- {snippet}\n"
            else:
                markdown += f"{key}: {value}\n"
        markdown += "\n"
    return markdown


def zenrows_scrapper(url):
    zen_client = ZenRowsClient(ZENROWS_KEY)
    params = {"js_render": "true"}
    response = zen_client.get(url, params=params)

    return response.text


def get_new_question_from_history(pre_question, new_question, answer):
    system_prompt = """
            Generate a new Google search query using the previous question and answer. And return only the query.


            previous question:- {pre_question}
            answer:- {answer}
            
            new question:- {new_question}
            """.format(pre_question=pre_question, answer=answer, new_question=new_question)

    return call_open_ai(system_prompt=system_prompt, max_tokens=50)


def scraping_job(strategy, question, url, results, key):
    if strategy == 'Deep':
        # page_source = get_page_source_selenium_base(url)
        page_source = zenrows_scrapper(url)
        formatted_page_source = format_output(page_source)
        formatted_page_source = clean_text(formatted_page_source)
    else:
        page_source = get_fast_url_source(url)
        formatted_page_source = format_output(page_source)
        formatted_page_source = clean_text(formatted_page_source)

    tokens = token_counter(formatted_page_source, 'gpt-3.5-turbo')
    if tokens >= 15585:
        results[key] = ''
    else:
        summary = url_summary(formatted_page_source, question)
        results[key] = summary


def get_docs_from_web(question, history, n_web_search, strategy):
    if history:
        question = get_new_question_from_history(history[0][0], question, history[0][1])
    docs = ''
    if strategy == 'Normal Fast':
        docs = get_web_search_you(question, n_web_search)
    else:
        urls = get_google_search_url(get_google_search_query(question))[:n_web_search]
        urls = list(set(urls))
        yield f"Scraping started for {len(urls)} urls:-\n\n"

        threads = [None] * len(urls)
        results = [None] * len(urls)

        for key, url in enumerate(urls):
            if '.pdf' in url or '.PDF' in url:
                yield f"Scraping skipped pdf detected. {key + 1}/{len(urls)} - {url} ❌\n"
                results[key] = ''
                continue

            threads[key] = Thread(target=scraping_job, args=(strategy, question, url, results, key))
            threads[key].start()

        for i in range(len(threads)):
            if threads[i] is not None:
                threads[i].join()

        for key, result in enumerate(results):
            if result is not None and result != '':
                docs += result
                docs += '\n Source:-' + urls[key] + '\n\n'
                yield f"Scraping Done {key + 1}/{len(urls)} - {urls[key]} βœ…\n"
    yield {"data": docs}