Spaces:
Sleeping
Sleeping
File size: 1,834 Bytes
c9d400e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import opensmile
import joblib
import wave
import datetime
import os
import pandas as pd
from sklearn.preprocessing import StandardScaler
from base64 import b64decode
import gradio as gr
model_path = "RF_emobase_20_model_top1_score0.6863_20231207_1537.joblib"
model = joblib.load(model_path)
def extract_features(audio_path):
smile = opensmile.Smile(
#feature_set=opensmile.FeatureSet.GeMAPSv01b,
feature_set=opensmile.FeatureSet.emobase,
feature_level=opensmile.FeatureLevel.Functionals,
)
feature_df = smile.process_files(audio_path)
output_features = ['F0env_sma_de_amean', 'lspFreq_sma_de[5]_linregc1', 'mfcc_sma[3]_linregc1', 'lspFreq_sma[6]_quartile1', 'lspFreq_sma_de[6]_linregerrQ', 'lspFreq_sma_de[6]_maxPos', 'lspFreq_sma_de[6]_iqr2-3', 'lspFreq_sma_de[7]_minPos', 'lspFreq_sma_de[4]_linregc1', 'lspFreq_sma_de[6]_linregerrA', 'lspFreq_sma_de[6]_linregc2', 'lspFreq_sma[5]_amean', 'lspFreq_sma_de[6]_iqr1-2', 'mfcc_sma[1]_minPos', 'mfcc_sma[4]_linregc1', 'mfcc_sma[9]_iqr2-3', 'lspFreq_sma[5]_kurtosis', 'lspFreq_sma_de[3]_skewness', 'mfcc_sma[3]_minPos', 'mfcc_sma[12]_linregc1']
df = pd.DataFrame(feature_df.values[0], index=feature_df.columns)
df = df[df.index.isin(output_features)]
df = df.T
scaler = StandardScaler()
feature = scaler.fit_transform(df)
print(df.shape)
return feature
def main(input):
# openSMILEで特徴量抽出
feature_vector = extract_features([input])
# ロードしたモデルで推論
prediction = model.predict(feature_vector)
#print(f"Prediction: {prediction}")
return prediction
gr.Interface(
title = 'Question Classifier Model',
fn = main,
inputs=[
gr.Audio(sources=["microphone","upload"], type="filepath")
],
outputs=[
"textbox"
],
live=True
).launch(debug=True) |