import streamlit as st import torch import torch.nn as nn import numpy as np import joblib from transformers import AutoTokenizer, AutoModel from rdkit import Chem from rdkit.Chem import Descriptors from rdkit.Chem import AllChem from datetime import datetime from db import get_database # This must be available in your repo import random # ------------------------ Ensuring Deterministic Behavior ------------------------ random.seed(42) np.random.seed(42) torch.manual_seed(42) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # ------------------------ Load ChemBERTa Model + Tokenizer ------------------------ @st.cache_resource def load_chemberta(): tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1") model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1") model.eval() return tokenizer, model tokenizer, chemberta = load_chemberta() # ------------------------ Load Scalers ------------------------ scalers = { "Tensile Strength": joblib.load("scaler_Tensile_strength_Mpa_.joblib"), "Ionization Energy": joblib.load("scaler_Ionization_Energy_eV_.joblib"), "Electron Affinity": joblib.load("scaler_Electron_Affinity_eV_.joblib"), "logP": joblib.load("scaler_LogP.joblib"), "Refractive Index": joblib.load("scaler_Refractive_Index.joblib"), "Molecular Weight": joblib.load("scaler_Molecular_Weight_g_mol_.joblib") } # ------------------------ Transformer Model ------------------------ class TransformerRegressor(nn.Module): def __init__(self, input_dim=2058, embedding_dim=768, ff_dim=1024, num_layers=2, output_dim=6): super().__init__() self.feat_proj = nn.Linear(input_dim, embedding_dim) encoder_layer = nn.TransformerEncoderLayer( d_model=embedding_dim, nhead=8, dim_feedforward=ff_dim, dropout=0.0, # No dropout for consistency batch_first=True ) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.regression_head = nn.Sequential( nn.Linear(embedding_dim, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, output_dim) ) def forward(self, x): x = self.feat_proj(x) x = self.transformer_encoder(x) x = x.mean(dim=1) return self.regression_head(x) # ------------------------ Load Model ------------------------ @st.cache_resource def load_model(): model = TransformerRegressor() model.load_state_dict(torch.load("transformer_model.pt", map_location=torch.device("cpu"))) model.eval() return model model = load_model() # ------------------------ Descriptors ------------------------ def compute_descriptors(smiles: str): mol = Chem.MolFromSmiles(smiles) if mol is None: raise ValueError("Invalid SMILES string.") descriptors = [ Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Descriptors.TPSA(mol), Descriptors.NumRotatableBonds(mol), Descriptors.NumHDonors(mol), Descriptors.NumHAcceptors(mol), Descriptors.FractionCSP3(mol), Descriptors.HeavyAtomCount(mol), Descriptors.RingCount(mol), Descriptors.MolMR(mol) ] return np.array(descriptors, dtype=np.float32) # ------------------------ Fingerprints ------------------------ def get_morgan_fingerprint(smiles, radius=2, n_bits=1280): mol = Chem.MolFromSmiles(smiles) if mol is None: raise ValueError("Invalid SMILES string.") fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits) return np.array(fp, dtype=np.float32).reshape(1, -1) # ------------------------ Embedding ------------------------ def get_chemberta_embedding(smiles: str): inputs = tokenizer(smiles, return_tensors="pt") with torch.no_grad(): outputs = chemberta(**inputs) return outputs.last_hidden_state.mean(dim=1) # Use average instead of CLS token # ------------------------ Save to DB ------------------------ def save_to_db(smiles, predictions): predictions_clean = {k: float(v) for k, v in predictions.items()} doc = { "smiles": smiles, "predictions": predictions_clean, "timestamp": datetime.now() } db = get_database() db["polymer_predictions"].insert_one(doc) # ------------------------ Streamlit App ------------------------ def show(): st.markdown("