Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
from rdkit import Chem
|
6 |
+
from rdkit.Chem import AllChem, Descriptors
|
7 |
+
from torch import nn
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
# Model Setup
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
12 |
+
chemberta = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
13 |
+
chemberta.eval()
|
14 |
+
|
15 |
+
# Define your model architecture
|
16 |
+
class TransformerRegressor(nn.Module):
|
17 |
+
def __init__(self, emb_dim=768, feat_dim=2058, output_dim=6, nhead=8, num_layers=2):
|
18 |
+
super().__init__()
|
19 |
+
self.feat_proj = nn.Linear(feat_dim, emb_dim)
|
20 |
+
encoder_layer = nn.TransformerEncoderLayer(d_model=768, nhead=8, dim_feedforward=1024, dropout=0.1, batch_first=True)
|
21 |
+
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
22 |
+
self.regression_head = nn.Sequential(
|
23 |
+
nn.Linear(emb_dim, 256), nn.ReLU(),
|
24 |
+
nn.Linear(256, 128), nn.ReLU(),
|
25 |
+
nn.Linear(128, output_dim)
|
26 |
+
)
|
27 |
+
|
28 |
+
def forward(self, x, feat):
|
29 |
+
feat_emb = self.feat_proj(feat)
|
30 |
+
stacked = torch.stack([x, feat_emb], dim=1)
|
31 |
+
encoded = self.transformer_encoder(stacked)
|
32 |
+
aggregated = encoded.mean(dim=1)
|
33 |
+
return self.regression_head(aggregated)
|
34 |
+
|
35 |
+
# Load model
|
36 |
+
model = TransformerRegressor()
|
37 |
+
model.load_state_dict(torch.load("best_model.pt", map_location=torch.device('cpu')))
|
38 |
+
model.eval()
|
39 |
+
|
40 |
+
# Feature Functions
|
41 |
+
descriptor_fns = [Descriptors.MolWt, Descriptors.MolLogP, Descriptors.TPSA,
|
42 |
+
Descriptors.NumRotatableBonds, Descriptors.NumHAcceptors,
|
43 |
+
Descriptors.NumHDonors, Descriptors.RingCount,
|
44 |
+
Descriptors.FractionCSP3, Descriptors.HeavyAtomCount,
|
45 |
+
Descriptors.NHOHCount]
|
46 |
+
|
47 |
+
def fix_smiles(s):
|
48 |
+
try:
|
49 |
+
mol = Chem.MolFromSmiles(s.strip())
|
50 |
+
if mol:
|
51 |
+
return Chem.MolToSmiles(mol)
|
52 |
+
except:
|
53 |
+
return None
|
54 |
+
return None
|
55 |
+
|
56 |
+
def compute_features(smiles):
|
57 |
+
mol = Chem.MolFromSmiles(smiles)
|
58 |
+
if not mol:
|
59 |
+
return [0]*10 + [0]*2048
|
60 |
+
desc = [fn(mol) for fn in descriptor_fns]
|
61 |
+
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048)
|
62 |
+
return desc + list(fp)
|
63 |
+
|
64 |
+
def embed_smiles(smiles_list):
|
65 |
+
inputs = tokenizer(smiles_list, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
66 |
+
outputs = chemberta(**inputs)
|
67 |
+
return outputs.last_hidden_state[:, 0, :]
|
68 |
+
|
69 |
+
# Streamlit UI
|
70 |
+
st.set_page_config(page_title="TransPolymer", layout="centered")
|
71 |
+
st.title("TransPolymer - Predict Polymer Properties")
|
72 |
+
|
73 |
+
smiles_input = st.text_input("Enter SMILES Representation of Polymer")
|
74 |
+
|
75 |
+
if st.button("Predict"):
|
76 |
+
fixed = fix_smiles(smiles_input)
|
77 |
+
if not fixed:
|
78 |
+
st.error("Invalid SMILES string.")
|
79 |
+
else:
|
80 |
+
features = compute_features(fixed)
|
81 |
+
features_tensor = torch.tensor(features, dtype=torch.float32).unsqueeze(0)
|
82 |
+
embedding = embed_smiles([fixed])
|
83 |
+
|
84 |
+
with torch.no_grad():
|
85 |
+
pred = model(embedding, features_tensor)
|
86 |
+
result = pred.numpy().flatten()
|
87 |
+
|
88 |
+
properties = [
|
89 |
+
"Tensile Strength",
|
90 |
+
"Ionization Energy",
|
91 |
+
"Electron Affinity",
|
92 |
+
"logP",
|
93 |
+
"Refractive Index",
|
94 |
+
"Molecular Weight"
|
95 |
+
]
|
96 |
+
|
97 |
+
st.success("Predicted Polymer Properties:")
|
98 |
+
for prop, val in zip(properties, result):
|
99 |
+
st.write(f"**{prop}**: {val:.4f}")
|