Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import joblib | |
from rdkit import Chem | |
from rdkit.Chem import Descriptors | |
from transformers import AutoTokenizer, AutoModel | |
import numpy as np | |
# Load tokenizer and model for embeddings | |
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1") | |
embedding_model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1") | |
# Load saved scalers (for inverse_transform) | |
scaler_tensile_strength = joblib.load("scaler_Tensile_strength_Mpa_.joblib") # Scaler for Tensile Strength | |
scaler_ionization_energy = joblib.load("scaler_lonization_Energy_eV_.joblib") # Scaler for Ionization Energy | |
scaler_electron_affinity = joblib.load("scaler_Electron_Affinity_eV_.joblib") # Scaler for Electron Affinity | |
scaler_logp = joblib.load("scaler_LogP.joblib") # Scaler for LogP | |
scaler_refractive_index = joblib.load("scaler_Refractive_Index.joblib") # Scaler for Refractive Index | |
scaler_molecular_weight = joblib.load("scaler_Molecular_Weight_g_mol_.joblib") # Scaler for Molecular Weight | |
# Descriptor function with exact order from training | |
def compute_descriptors(smiles): | |
mol = Chem.MolFromSmiles(smiles) | |
if mol is None: | |
raise ValueError("Invalid SMILES") | |
return np.array([ | |
Descriptors.MolWt(mol), | |
Descriptors.MolLogP(mol), | |
Descriptors.TPSA(mol), | |
Descriptors.NumRotatableBonds(mol), | |
Descriptors.NumHDonors(mol), | |
Descriptors.NumHAcceptors(mol), | |
Descriptors.FractionCSP3(mol), | |
Descriptors.HeavyAtomCount(mol), | |
Descriptors.RingCount(mol), | |
Descriptors.MolMR(mol) | |
], dtype=np.float32) | |
# Define your model class exactly like in training | |
class TransformerRegressor(nn.Module): | |
def __init__(self, input_dim=768, descriptor_dim=10, d_model=768, nhead=4, num_layers=2, num_targets=6): | |
super().__init__() | |
self.descriptor_proj = nn.Linear(descriptor_dim, d_model) | |
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, batch_first=True) | |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) | |
self.regressor = nn.Sequential( | |
nn.Flatten(), | |
nn.Linear(2 * d_model, 256), | |
nn.ReLU(), | |
nn.Linear(256, num_targets) | |
) | |
def forward(self, embedding, descriptors): | |
desc_proj = self.descriptor_proj(descriptors).unsqueeze(1) # (B, 1, d_model) | |
stacked = torch.cat([embedding.unsqueeze(1), desc_proj], dim=1) # (B, 2, d_model) | |
encoded = self.transformer(stacked) # (B, 2, d_model) | |
output = self.regressor(encoded) | |
return output | |
# Load model | |
model = TransformerRegressor() | |
model.load_state_dict(torch.load("transformer_model.pt", map_location=torch.device("cpu"))) | |
model.eval() | |
# Main prediction function | |
def predict_properties(smiles): | |
try: | |
descriptors = compute_descriptors(smiles) | |
descriptors_tensor = torch.tensor(descriptors).unsqueeze(0) # (1, 10) | |
# Get embedding | |
inputs = tokenizer(smiles, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = embedding_model(**inputs) | |
emb = outputs.last_hidden_state[:, 0, :] # [CLS] token, shape (1, 768) | |
# Forward pass | |
with torch.no_grad(): | |
preds = model(emb, descriptors_tensor) | |
# Inverse transform predictions using respective scalers | |
preds_np = preds.numpy() | |
preds_rescaled = np.concatenate([ | |
scaler_tensile_strength.inverse_transform(preds_np[:, [0]]), | |
scaler_ionization_energy.inverse_transform(preds_np[:, [1]]), | |
scaler_electron_affinity.inverse_transform(preds_np[:, [2]]), | |
scaler_logp.inverse_transform(preds_np[:, [3]]), | |
scaler_refractive_index.inverse_transform(preds_np[:, [4]]), | |
scaler_molecular_weight.inverse_transform(preds_np[:, [5]]) | |
], axis=1) | |
# Round and format | |
keys = ["Tensile Strength", "Ionization Energy", "Electron Affinity", "logP", "Refractive Index", "Molecular Weight"] | |
results = dict(zip(keys, preds_rescaled.flatten().round(4))) | |
return results | |
except Exception as e: | |
return {"error": str(e)} |