Transpolymer2 / transformer_model.py
transpolymer's picture
Create transformer_model.py
bcfbb05 verified
raw
history blame
4.09 kB
# transformer_model.py
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel
from rdkit import Chem
from rdkit.Chem import Descriptors, AllChem
from sklearn.preprocessing import StandardScaler
import numpy as np
# Initialize Tokenizer and Model from ChemBERTa
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
chemberta = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
chemberta.eval()
# Function to fix SMILES
def fix_smiles(s):
try:
mol = Chem.MolFromSmiles(s.strip())
if mol:
return Chem.MolToSmiles(mol)
except:
pass
return None
# Function to compute descriptors + fingerprints
def compute_features(smiles):
mol = Chem.MolFromSmiles(smiles)
if not mol:
return [0] * 10 + [0] * 2048
descriptor_fns = [
Descriptors.MolWt, Descriptors.MolLogP, Descriptors.TPSA,
Descriptors.NumRotatableBonds, Descriptors.NumHDonors,
Descriptors.NumHAcceptors, Descriptors.FractionCSP3,
Descriptors.HeavyAtomCount, Descriptors.RingCount, Descriptors.MolMR
]
desc = [fn(mol) for fn in descriptor_fns]
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048)
return desc + list(fp)
# Embedding function using ChemBERTa
@torch.no_grad()
def embed_smiles(smiles_list):
inputs = tokenizer(smiles_list, return_tensors="pt", padding=True, truncation=True, max_length=128)
outputs = chemberta(**inputs)
return outputs.last_hidden_state[:, 0, :] # CLS token
# Model Definition (Transformer Regressor)
class TransformerRegressor(nn.Module):
def __init__(self, emb_dim=768, feat_dim=2058, output_dim=6, nhead=8, num_layers=2):
super().__init__()
self.feat_proj = nn.Linear(feat_dim, emb_dim) # Project features to embedding space
encoder_layer = nn.TransformerEncoderLayer(d_model=emb_dim, nhead=nhead, dim_feedforward=1024, dropout=0.1, batch_first=True)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) # Transformer Encoder
# Regression head
self.regression_head = nn.Sequential(
nn.Linear(emb_dim, 256), nn.ReLU(),
nn.Linear(256, 128), nn.ReLU(),
nn.Linear(128, output_dim)
)
def forward(self, x, feat):
feat_emb = self.feat_proj(feat) # [B, 768]
stacked = torch.stack([x, feat_emb], dim=1) # Stack SMILES embedding and features [B, 2, 768]
encoded = self.transformer_encoder(stacked) # Transformer encoding
aggregated = encoded.mean(dim=1) # Aggregate encoded sequence
return self.regression_head(aggregated) # Regression output
# Ensemble prediction class
class EnsembleModel:
def __init__(self, model_paths, device):
self.models = []
self.device = device
self.load_models(model_paths)
def load_models(self, model_paths):
for path in model_paths:
model = TransformerRegressor().to(self.device)
model.load_state_dict(torch.load(path, map_location=self.device))
model.eval()
self.models.append(model)
def predict(self, smiles, features_tensor):
# Clean and embed SMILES
cleaned_smiles = fix_smiles(smiles)
if not cleaned_smiles:
raise ValueError("Invalid SMILES string.")
# Embed SMILES
cls_embedding = embed_smiles([cleaned_smiles]).to(self.device)
# Predict using the ensemble
preds_all = []
for model in self.models:
with torch.no_grad():
pred = model(cls_embedding, features_tensor)
preds_all.append(pred)
# Average the predictions across the models
preds_ensemble = torch.stack(preds_all).mean(dim=0)
return preds_ensemble.cpu().numpy()
# Helper function to inverse transform predictions
def inverse_transform_predictions(y_pred, scalers):
return np.column_stack([scaler.inverse_transform(y_pred[:, i:i+1]) for i, scaler in enumerate(scalers)])