Spaces:
Running
Running
File size: 5,018 Bytes
4b283df 84dad8f 5e9e549 b73e3e2 4b283df 84dad8f 5e9e549 4b283df c621eb3 4b283df 5e9e549 4b283df b73e3e2 5e9e549 4b283df 5e9e549 4b283df 5e9e549 3de6f45 eea9e94 3de6f45 5e9e549 3de6f45 eea9e94 3de6f45 5e9e549 eea9e94 3de6f45 eea9e94 4b283df c3f06b5 4b283df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import streamlit as st
import torch
import torch.nn as nn
import numpy as np
import joblib
from transformers import AutoTokenizer, AutoModel
from rdkit import Chem
from rdkit.Chem import Descriptors
from datetime import datetime
from db import get_database # This must be available in your repo
# Load ChemBERTa model + tokenizer
@st.cache_resource
def load_chemberta():
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
model.eval()
return tokenizer, model
tokenizer, chemberta = load_chemberta()
# Load scalers
scalers = {
"Tensile Strength": joblib.load("scaler_Tensile_strength_Mpa_.joblib"),
"Ionization Energy": joblib.load("scaler_Ionization_Energy_eV_.joblib"),
"Electron Affinity": joblib.load("scaler_Electron_Affinity_eV_.joblib"),
"logP": joblib.load("scaler_LogP.joblib"),
"Refractive Index": joblib.load("scaler_Refractive_Index.joblib"),
"Molecular Weight": joblib.load("scaler_Molecular_Weight_g_mol_.joblib")
}
# Model Definition
class TransformerRegressor(nn.Module):
def __init__(self, input_dim=2058, embedding_dim=768, ff_dim=1024, num_layers=2, output_dim=6):
super().__init__()
self.feat_proj = nn.Linear(input_dim, embedding_dim)
encoder_layer = nn.TransformerEncoderLayer(
d_model=embedding_dim,
nhead=8,
dim_feedforward=ff_dim,
dropout=0.1,
batch_first=True
)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.regression_head = nn.Sequential(
nn.Linear(embedding_dim, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, output_dim)
)
def forward(self, x):
x = self.feat_proj(x)
x = self.transformer_encoder(x)
x = x.mean(dim=1)
return self.regression_head(x)
# Load model
@st.cache_resource
def load_model():
model = TransformerRegressor()
model.load_state_dict(torch.load("transformer_model.pt", map_location=torch.device("cpu")))
model.eval()
return model
model = load_model()
# Descriptor computation
def compute_descriptors(smiles: str):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
raise ValueError("Invalid SMILES string.")
descriptors = [
Descriptors.MolWt(mol),
Descriptors.MolLogP(mol),
Descriptors.TPSA(mol),
Descriptors.NumRotatableBonds(mol),
Descriptors.NumHDonors(mol),
Descriptors.NumHAcceptors(mol),
Descriptors.FractionCSP3(mol),
Descriptors.HeavyAtomCount(mol),
Descriptors.RingCount(mol),
Descriptors.MolMR(mol)
]
return np.array(descriptors, dtype=np.float32)
# Embedding function
def get_chemberta_embedding(smiles: str):
inputs = tokenizer(smiles, return_tensors="pt")
with torch.no_grad():
outputs = chemberta(**inputs)
return outputs.last_hidden_state[:, 0, :] # CLS token
# Save prediction to MongoDB
def save_to_db(smiles, predictions):
predictions_clean = {k: float(v) for k, v in predictions.items()}
doc = {
"smiles": smiles,
"predictions": predictions_clean,
"timestamp": datetime.now()
}
db = get_database()
db["polymer_predictions"].insert_one(doc)
# Main Streamlit UI + prediction
def show():
st.markdown("<h1 style='text-align: center; color: #4CAF50;'>🔬 Polymer Property Prediction</h1>", unsafe_allow_html=True)
st.markdown("<hr style='border: 1px solid #ccc;'>", unsafe_allow_html=True)
smiles_input = st.text_input("Enter SMILES Representation of Polymer")
if st.button("Predict"):
try:
mol = Chem.MolFromSmiles(smiles_input)
if mol is None:
st.error("Invalid SMILES string.")
return
descriptors = compute_descriptors(smiles_input)
descriptors_tensor = torch.tensor(descriptors, dtype=torch.float32).unsqueeze(0)
embedding = get_chemberta_embedding(smiles_input)
combined = torch.cat([embedding, descriptors_tensor], dim=1).unsqueeze(1) # (1, 1, 2058)
with torch.no_grad():
preds = model(combined)
preds_np = preds.numpy()
keys = list(scalers.keys())
preds_rescaled = np.concatenate([
scalers[keys[i]].inverse_transform(preds_np[:, [i]])
for i in range(6)
], axis=1)
results = {key: round(val, 4) for key, val in zip(keys, preds_rescaled.flatten())}
# Display results
st.success("Predicted Properties:")
for key, val in results.items():
st.markdown(f"**{key}**: {val}")
# Save to MongoDB
save_to_db(smiles_input, results)
except Exception as e:
st.error(f"Prediction failed: {e}") |