thuyentruong's picture
Update app.py
1c012dd verified
raw
history blame
1.14 kB
import gradio as gr
from transformers import pipeline
Examples_to_teach_model=f"""
Text: I hate apples
Sentiment analysis:
Sentiments: Negative
PPrint Key words: hate, aples
Text: I enjoy watching movies
Sentiment analysis:
Sentiments: Positive
PPrint Key words: enjoy, movies
Text: I'm tired of this long process
Sentiment analysis:
Sentiments: Negative
PPrint Key words: tired, long process
"""
question="""
Text: I love chips.
Sentiment analysis:
"""
def make_prompt(sentence):
prompt = Examples_to_teach_model+ "Text: " + sentence + "Sentiment analysis:"
return prompt
def get_sentiment_from_llm(sentence):
input = make_prompt(sentence)
inputs = tokenizer(input, return_tensors='pt')
output = tokenizer.decode(
model.generate(
inputs["input_ids"],
max_new_tokens=100,
)[0],
skip_special_tokens=True)
return "\n".join(output.split('PPrint '))
get_rules_from_llm(question)
gr.Interface.from_pipeline(pipe,
title="Sentiment Analysis",
description="Sentiment analysis and keywords extraction.",
).launch()