File size: 7,256 Bytes
24b38ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
Hugging Face Spaces App - Image Captioning
Deploy this to HF Spaces for free hosting
"""

import gradio as gr
import torch
from PIL import Image
import time

def load_models():
    """Load models with error handling"""
    models = {}
    
    try:
        from transformers import BlipProcessor, BlipForConditionalGeneration
        print("Loading BLIP model...")
        models['blip_processor'] = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
        models['blip_model'] = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
        print("βœ… BLIP loaded successfully")
    except Exception as e:
        print(f"❌ BLIP failed to load: {e}")
        models['blip_error'] = str(e)
    
    try:
        from transformers import AutoProcessor, AutoModelForCausalLM
        print("Loading GIT model...")
        models['git_processor'] = AutoProcessor.from_pretrained("microsoft/git-base")
        models['git_model'] = AutoModelForCausalLM.from_pretrained("microsoft/git-base")
        print("βœ… GIT loaded successfully")
    except Exception as e:
        print(f"❌ GIT failed to load: {e}")
        models['git_error'] = str(e)
    
    return models

# Load models at startup
print("πŸš€ Loading AI models...")
models = load_models()
print(f"πŸ“¦ Models loading completed")

def generate_captions(image, true_caption=""):
    """Generate captions using available models"""
    if image is None:
        return "❌ Please upload an image first."
    
    # Ensure image is in RGB format
    if image.mode != 'RGB':
        image = image.convert('RGB')
    
    results = []
    start_time = time.time()
    
    # Add true caption if provided
    if true_caption.strip():
        results.append(f"**🎯 True Caption:**")
        results.append(f"{true_caption.strip()}")
        results.append("")
    
    # BLIP model
    if 'blip_model' in models:
        try:
            blip_start = time.time()
            inputs = models['blip_processor'](image, return_tensors="pt")
            out = models['blip_model'].generate(**inputs, max_length=50, num_beams=5)
            blip_caption = models['blip_processor'].decode(out[0], skip_special_tokens=True)
            blip_time = time.time() - blip_start
            
            results.append(f"**πŸ€– BLIP Model:** ({blip_time:.2f}s)")
            results.append(f"{blip_caption}")
            results.append("")
        except Exception as e:
            results.append(f"**πŸ€– BLIP Model:** Error - {str(e)}")
            results.append("")
    elif 'blip_error' in models:
        results.append(f"**πŸ€– BLIP Model:** Not available - {models['blip_error']}")
        results.append("")
    
    # GIT model
    if 'git_model' in models:
        try:
            git_start = time.time()
            inputs = models['git_processor'](images=image, return_tensors="pt")
            generated_ids = models['git_model'].generate(
                pixel_values=inputs.pixel_values, 
                max_length=50, 
                num_beams=5
            )
            git_caption = models['git_processor'].batch_decode(generated_ids, skip_special_tokens=True)[0]
            git_time = time.time() - git_start
            
            results.append(f"**🧠 GIT Model:** ({git_time:.2f}s)")
            results.append(f"{git_caption}")
            results.append("")
        except Exception as e:
            results.append(f"**🧠 GIT Model:** Error - {str(e)}")
            results.append("")
    elif 'git_error' in models:
        results.append(f"**🧠 GIT Model:** Not available - {models['git_error']}")
        results.append("")
    
    total_time = time.time() - start_time
    results.append("---")
    results.append(f"**⏱️ Total Processing Time:** {total_time:.2f} seconds")
    results.append("")
    results.append("**πŸ“Š About the Models:**")
    results.append("β€’ **BLIP**: Salesforce's Bootstrapping Language-Image Pre-training")
    results.append("β€’ **GIT**: Microsoft's Generative Image-to-text Transformer")
    
    return "\n".join(results)

# Create Gradio interface
with gr.Blocks(
    title="AI Image Captioning", 
    theme=gr.themes.Soft(),
    css="""
    .gradio-container {
        max-width: 1200px !important;
    }
    """
) as demo:
    
    gr.Markdown("""
    # πŸ€– AI Image Captioning
    
    Upload an image and get captions from multiple state-of-the-art AI models!
    
    **Available Models:**
    - πŸ€– **BLIP** (Salesforce): Fast and accurate image captioning
    - 🧠 **GIT** (Microsoft): Advanced generative image-to-text model
    
    *Simply upload an image or try one of the examples below!*
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(
                type="pil", 
                label="πŸ“Έ Upload Your Image",
                height=400
            )
            
            true_caption_input = gr.Textbox(
                label="🎯 True Caption (Optional)",
                placeholder="Enter the correct caption to compare with AI predictions...",
                lines=2
            )
            
            generate_btn = gr.Button(
                "✨ Generate Captions", 
                variant="primary",
                size="lg"
            )
        
        with gr.Column(scale=1):
            output = gr.Textbox(
                label="πŸ€– AI Generated Captions",
                lines=20,
                max_lines=25,
                show_copy_button=True
            )
    
    # Example images
    gr.Markdown("### πŸ“‹ Try These Examples:")
    
    example_images = [
        ["https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat.jpg", "A cat sitting on a surface"],
        ["https://huggingface.co/datasets/mishig/sample_images/resolve/main/dog.jpg", "A dog in a field"],
        ["https://images.unsplash.com/photo-1506905925346-21bda4d32df4?w=500", "A mountain landscape with snow"],
        ["https://images.unsplash.com/photo-1549298916-b41d501d3772?w=500", "A red sports car"],
        ["https://images.unsplash.com/photo-1551963831-b3b1ca40c98e?w=500", "A breakfast with coffee and pastries"],
    ]
    
    gr.Examples(
        examples=example_images,
        inputs=[image_input, true_caption_input],
        outputs=output,
        fn=generate_captions,
        cache_examples=False
    )
    
    # Event handlers
    generate_btn.click(
        fn=generate_captions,
        inputs=[image_input, true_caption_input],
        outputs=output
    )
    
    # Auto-generate when image is uploaded
    image_input.change(
        fn=generate_captions,
        inputs=[image_input, true_caption_input],
        outputs=output
    )
    
    gr.Markdown("""
    ---
    
    **πŸ”§ Technical Details:**
    - Models run on Hugging Face's infrastructure
    - Processing time varies based on image size and complexity
    - All models are open-source and publicly available
    
    **πŸ“ Tips:**
    - Try different types of images (people, objects, landscapes, etc.)
    - Compare the AI captions with your own description
    - Larger images may take longer to process
    """)

# Launch the app
if __name__ == "__main__":
    demo.launch()