Spaces:
Running
Running
# utils.py | |
from __future__ import annotations | |
import io, base64, math | |
from math import gcd | |
import numpy as np | |
import soundfile as sf | |
from scipy.signal import resample_poly | |
# Magenta RT audio types | |
from magenta_rt import audio as au | |
# Optional loudness | |
try: | |
import pyloudnorm as pyln | |
_HAS_LOUDNORM = True | |
except Exception: | |
_HAS_LOUDNORM = False | |
# ---------- Loudness ---------- | |
def _measure_lufs(wav: au.Waveform) -> float: | |
meter = pyln.Meter(wav.sample_rate) # BS.1770-4 | |
return float(meter.integrated_loudness(wav.samples)) | |
def _rms(x: np.ndarray) -> float: | |
if x.size == 0: return 0.0 | |
return float(np.sqrt(np.mean(x**2))) | |
def match_loudness_to_reference( | |
ref: au.Waveform, | |
target: au.Waveform, | |
method: str = "auto", # "auto"|"lufs"|"rms"|"none" | |
headroom_db: float = 1.0 | |
) -> tuple[au.Waveform, dict]: | |
stats = {"method": method, "applied_gain_db": 0.0} | |
if method == "none": | |
return target, stats | |
if method == "auto": | |
method = "lufs" if _HAS_LOUDNORM else "rms" | |
if method == "lufs" and _HAS_LOUDNORM: | |
L_ref = _measure_lufs(ref) | |
L_tgt = _measure_lufs(target) | |
delta_db = L_ref - L_tgt | |
gain = 10.0 ** (delta_db / 20.0) | |
y = target.samples.astype(np.float32) * gain | |
stats.update({"ref_lufs": L_ref, "tgt_lufs_before": L_tgt, "applied_gain_db": delta_db}) | |
else: | |
ra = _rms(ref.samples) | |
rb = _rms(target.samples) | |
if rb <= 1e-12: | |
return target, stats | |
gain = ra / rb | |
y = target.samples.astype(np.float32) * gain | |
stats.update({"ref_rms": ra, "tgt_rms_before": rb, "applied_gain_db": 20*np.log10(max(gain,1e-12))}) | |
# simple peak “limiter” to keep headroom | |
limit = 10 ** (-headroom_db / 20.0) # e.g., -1 dBFS | |
peak = float(np.max(np.abs(y))) if y.size else 0.0 | |
if peak > limit: | |
y *= (limit / peak) | |
stats["post_peak_limited"] = True | |
else: | |
stats["post_peak_limited"] = False | |
target.samples = y.astype(np.float32) | |
return target, stats | |
# ---------- Stitch / fades / trims ---------- | |
def stitch_generated(chunks, sr: int, xfade_s: float, drop_first_pre_roll: bool = True): | |
if not chunks: | |
raise ValueError("no chunks") | |
xfade_n = int(round(xfade_s * sr)) | |
if xfade_n <= 0: | |
return au.Waveform(np.concatenate([c.samples for c in chunks], axis=0), sr) | |
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32) | |
eq_in, eq_out = np.sin(t)[:, None], np.cos(t)[:, None] | |
first = chunks[0].samples | |
if first.shape[0] < xfade_n: | |
raise ValueError("chunk shorter than crossfade prefix") | |
# 🔧 key change: | |
out = first[xfade_n:].copy() if drop_first_pre_roll else first.copy() | |
for i in range(1, len(chunks)): | |
cur = chunks[i].samples | |
if cur.shape[0] < xfade_n: | |
continue | |
head, tail = cur[:xfade_n], cur[xfade_n:] | |
mixed = out[-xfade_n:] * eq_out + head * eq_in | |
out = np.concatenate([out[:-xfade_n], mixed, tail], axis=0) | |
return au.Waveform(out, sr) | |
def hard_trim_seconds(wav: au.Waveform, seconds: float) -> au.Waveform: | |
n = int(round(seconds * wav.sample_rate)) | |
return au.Waveform(wav.samples[:n], wav.sample_rate) | |
def apply_micro_fades(wav: au.Waveform, ms: int = 5) -> None: | |
n = int(wav.sample_rate * ms / 1000.0) | |
if n > 0 and wav.samples.shape[0] > 2*n: | |
env = np.linspace(0.0, 1.0, n, dtype=np.float32)[:, None] | |
wav.samples[:n] *= env | |
wav.samples[-n:] *= env[::-1] | |
# ---------- Token context helpers ---------- | |
def make_bar_aligned_context(tokens, bpm, fps=25.0, ctx_frames=250, beats_per_bar=4): | |
""" | |
Return a ctx_frames-long slice of `tokens` whose **end** lands on the nearest | |
whole-bar boundary in codec-frame space, even when frames_per_bar is fractional. | |
tokens: np.ndarray of shape (T, D) or (T,) where T = codec frames | |
bpm: float | |
fps: float (codec frames per second; keep this as float) | |
ctx_frames: int (length of context window in codec frames) | |
beats_per_bar: int | |
""" | |
if tokens is None: | |
raise ValueError("tokens is None") | |
tokens = np.asarray(tokens) | |
if tokens.ndim == 1: | |
tokens = tokens[:, None] # promote to (T, 1) for uniform tiling | |
T = tokens.shape[0] | |
if T == 0: | |
return tokens | |
fps = float(fps) | |
frames_per_bar_f = (beats_per_bar * 60.0 / float(bpm)) * fps # float frames per bar | |
# Tile a little more than we need so we can always snap the END to a bar boundary | |
reps = int(np.ceil((ctx_frames + T) / float(T))) + 1 | |
tiled = np.tile(tokens, (reps, 1)) | |
total = tiled.shape[0] | |
# How many whole bars fit? | |
k_bars = int(np.floor(total / frames_per_bar_f)) | |
if k_bars <= 0: | |
# Fallback: just take the last ctx_frames | |
window = tiled[-ctx_frames:] | |
return window | |
# Snap END index to the nearest integer frame at a whole-bar boundary | |
end_idx = int(round(k_bars * frames_per_bar_f)) | |
end_idx = min(max(end_idx, ctx_frames), total) | |
start_idx = end_idx - ctx_frames | |
if start_idx < 0: | |
start_idx = 0 | |
end_idx = ctx_frames | |
window = tiled[start_idx:end_idx] | |
# Guard against rare off-by-one due to rounding | |
if window.shape[0] < ctx_frames: | |
pad = np.tile(tokens, (int(np.ceil((ctx_frames - window.shape[0]) / T)), 1)) | |
window = np.vstack([window, pad])[:ctx_frames] | |
elif window.shape[0] > ctx_frames: | |
window = window[-ctx_frames:] | |
return window | |
def take_bar_aligned_tail( | |
wav: au.Waveform, | |
bpm: float, | |
beats_per_bar: int, | |
ctx_seconds: float, | |
max_bars=None | |
) -> au.Waveform: | |
""" | |
Take a tail whose length is an integer number of bars, with the END aligned | |
to a bar boundary. Uses ceil for bars_needed so we never under-fill the context. | |
""" | |
import math | |
# seconds per bar | |
spb = (60.0 / float(bpm)) * float(beats_per_bar) | |
# Pick enough whole bars to cover ctx_seconds (avoid underfilling on round-down). | |
# The small epsilon avoids an extra bar due to FP jitter when ctx_seconds ~= k * spb. | |
eps = 1e-9 | |
bars_needed = max(1, int(math.ceil((float(ctx_seconds) - eps) / spb))) | |
if max_bars is not None: | |
bars_needed = min(bars_needed, int(max_bars)) | |
# Convert bars -> samples (do rounding once at the end for stability) | |
samples_per_bar_f = spb * float(wav.sample_rate) | |
n = int(round(bars_needed * samples_per_bar_f)) | |
total = int(wav.samples.shape[0]) | |
if n >= total: | |
# Not enough audio to take that many bars—return as-is (current behavior). | |
return wav | |
start = total - n | |
return au.Waveform(wav.samples[start:], wav.sample_rate) | |
# ---------- SR normalize + snap ---------- | |
def resample_and_snap(x: np.ndarray, cur_sr: int, target_sr: int, seconds: float) -> np.ndarray: | |
""" | |
x: np.ndarray shape (S, C), float32 | |
Returns: exact-length array (round(seconds*target_sr), C) | |
""" | |
if x.ndim == 1: | |
x = x[:, None] | |
if cur_sr != target_sr: | |
g = gcd(cur_sr, target_sr) | |
up, down = target_sr // g, cur_sr // g | |
x = resample_poly(x, up, down, axis=0) | |
expected_len = int(round(seconds * target_sr)) | |
if x.shape[0] < expected_len: | |
pad = np.zeros((expected_len - x.shape[0], x.shape[1]), dtype=x.dtype) | |
x = np.vstack([x, pad]) | |
elif x.shape[0] > expected_len: | |
x = x[:expected_len, :] | |
return x.astype(np.float32, copy=False) | |
# ---------- WAV encode ---------- | |
def wav_bytes_base64(x: np.ndarray, sr: int) -> tuple[str, int, int]: | |
""" | |
x: np.ndarray shape (S, C) | |
returns: (base64_wav, total_samples, channels) | |
""" | |
buf = io.BytesIO() | |
sf.write(buf, x, sr, subtype="FLOAT", format="WAV") | |
buf.seek(0) | |
b64 = base64.b64encode(buf.read()).decode("utf-8") | |
return b64, int(x.shape[0]), int(x.shape[1]) | |
def _ratio(out_sr: int, in_sr: int) -> tuple[int, int]: | |
g = gcd(int(out_sr), int(in_sr)) | |
return int(out_sr) // g, int(in_sr) // g | |
class StreamingResampler: | |
""" | |
Stateful streaming resampler. | |
Prefers soxr (best), then libsamplerate; final fallback is block resample_poly. | |
Always pass float32 arrays shaped (S, C). | |
""" | |
def __init__(self, in_sr: int, out_sr: int, channels: int = 2, quality: str = "VHQ"): | |
self.in_sr = int(in_sr) | |
self.out_sr = int(out_sr) | |
self.channels = int(channels) | |
self.quality = quality | |
self._backend = None | |
# Try soxr first | |
try: | |
import soxr # pip install soxr | |
self._backend = "soxr" | |
# dtype float32 keeps things consistent with the rest of your code | |
self._rs = soxr.Resampler( | |
self.in_sr, | |
self.out_sr, | |
channels=self.channels, | |
dtype="float32", | |
quality=self.quality, # "Q", "HQ", "VHQ" | |
) | |
except Exception: | |
# Try libsamplerate | |
try: | |
import samplerate # pip install samplerate | |
self._backend = "samplerate" | |
# sinc_best == highest quality; you can choose 'sinc_medium' for speed | |
self._rs = samplerate.Resampler(converter_type="sinc_best", channels=self.channels) | |
except Exception: | |
# Last resort: block resample (not truly streaming) | |
from scipy.signal import resample_poly | |
self._backend = "scipy" | |
self._resample_poly = resample_poly | |
self._L, self._M = _ratio(self.out_sr, self.in_sr) | |
# Keep a tiny tail to help transitions (still not perfect vs true streaming) | |
self._hist = np.zeros((0, self.channels), dtype=np.float32) | |
def process(self, x: np.ndarray, final: bool = False) -> np.ndarray: | |
"""Feed a chunk (S, C) and get resampled chunk (S', C). Keep calling in order.""" | |
if x.size == 0 and not final: | |
# nothing to do | |
return np.zeros((0, self.channels), dtype=np.float32) | |
if self._backend == "soxr": | |
return self._rs.process(x, final=final) | |
elif self._backend == "samplerate": | |
import samplerate | |
ratio = float(self.out_sr) / float(self.in_sr) | |
# end_of_input=True flushes tail on the last call | |
y = self._rs.process(x, ratio, end_of_input=final) | |
# libsamplerate returns (S', C) | |
return y.astype(np.float32, copy=False) | |
# --- scipy fallback (block, not truly streaming) --- | |
# We concatenate a short history to reduce block edge artifacts | |
x_ext = x if self._hist.size == 0 else np.vstack([self._hist, x]) | |
y = self._resample_poly(x_ext, up=self._L, down=self._M, axis=0).astype(np.float32, copy=False) | |
# Heuristic: drop the portion corresponding roughly to the history to avoid duplicate content | |
# (Not perfect, but helps a lot when chunks are reasonably sized.) | |
drop = int(round(self._hist.shape[0] * self.out_sr / self.in_sr)) | |
y = y[drop:] if drop < y.shape[0] else np.zeros((0, self.channels), dtype=np.float32) | |
# Keep a small input tail for the next call (say ~ 4 ms at in_sr) | |
tail_samples = max(int(0.004 * self.in_sr), 1) | |
self._hist = x[-tail_samples:] if x.shape[0] >= tail_samples else x.copy() | |
if final: | |
self._hist = np.zeros((0, self.channels), dtype=np.float32) | |
return y | |
def flush(self) -> np.ndarray: | |
"""Drain converter tail (call at stop).""" | |
if self._backend == "soxr": | |
return self._rs.process(np.zeros((0, self.channels), dtype=np.float32), final=True) | |
elif self._backend == "samplerate": | |
ratio = float(self.out_sr) / float(self.in_sr) | |
return self._rs.process(np.zeros((0, self.channels), dtype=np.float32), ratio, end_of_input=True) | |
else: | |
# nothing meaningful to flush in scipy fallback | |
return np.zeros((0, self.channels), dtype=np.float32) | |