Spaces:
Running
Running
# jam_worker.py - Bar-locked spool rewrite | |
from __future__ import annotations | |
import threading, time | |
from dataclasses import dataclass | |
from fractions import Fraction | |
from typing import Optional, Dict, Tuple, List | |
import numpy as np | |
from magenta_rt import audio as au | |
from utils import ( | |
StreamingResampler, | |
match_loudness_to_reference, | |
make_bar_aligned_context, | |
take_bar_aligned_tail, | |
wav_bytes_base64, | |
) | |
# ----------------------------- | |
# Data classes | |
# ----------------------------- | |
class JamParams: | |
bpm: float | |
beats_per_bar: int | |
bars_per_chunk: int | |
target_sr: int | |
loudness_mode: str = "auto" | |
headroom_db: float = 1.0 | |
style_vec: Optional[np.ndarray] = None | |
ref_loop: Optional[au.Waveform] = None | |
combined_loop: Optional[au.Waveform] = None | |
guidance_weight: float = 1.1 | |
temperature: float = 1.1 | |
topk: int = 40 | |
style_ramp_seconds: float = 8.0 # 0 => instant (current behavior), try 6.0–10.0 for gentle glides | |
class JamChunk: | |
index: int | |
audio_base64: str | |
metadata: dict | |
# ----------------------------- | |
# Helpers | |
# ----------------------------- | |
class BarClock: | |
"""Sample-domain bar clock with drift-free absolute boundaries.""" | |
def __init__(self, target_sr: int, bpm: float, beats_per_bar: int, base_offset_samples: int = 0): | |
self.sr = int(target_sr) | |
self.bpm = Fraction(str(bpm)) # exact decimal to avoid FP drift | |
self.beats_per_bar = int(beats_per_bar) | |
self.bar_samps = Fraction(self.sr * 60 * self.beats_per_bar, 1) / self.bpm | |
self.base = int(base_offset_samples) | |
def bounds_for_chunk(self, chunk_index: int, bars_per_chunk: int) -> Tuple[int, int]: | |
start_f = self.base + self.bar_samps * (chunk_index * bars_per_chunk) | |
end_f = self.base + self.bar_samps * ((chunk_index + 1) * bars_per_chunk) | |
return int(round(start_f)), int(round(end_f)) | |
def seconds_per_bar(self) -> float: | |
return float(self.beats_per_bar) * (60.0 / float(self.bpm)) | |
# ----------------------------- | |
# Worker | |
# ----------------------------- | |
class JamWorker(threading.Thread): | |
FRAMES_PER_SECOND: float | None = None # filled in __init__ once codec is available | |
"""Generates continuous audio with MagentaRT, spools it at target SR, | |
and emits *sample-accurate*, bar-aligned chunks (no FPS drift).""" | |
def __init__(self, mrt, params: JamParams): | |
super().__init__(daemon=True) | |
self.mrt = mrt | |
self.params = params | |
# external callers (FastAPI endpoints) use this for atomic updates | |
self._lock = threading.RLock() | |
# generation state | |
self.state = self.mrt.init_state() | |
self.mrt.guidance_weight = float(self.params.guidance_weight) | |
self.mrt.temperature = float(self.params.temperature) | |
self.mrt.topk = int(self.params.topk) | |
# codec/setup | |
self._codec_fps = float(self.mrt.codec.frame_rate) | |
JamWorker.FRAMES_PER_SECOND = self._codec_fps | |
self._ctx_frames = int(self.mrt.config.context_length_frames) | |
self._ctx_seconds = self._ctx_frames / self._codec_fps | |
# model stream (model SR) for internal continuity/crossfades | |
self._model_stream: Optional[np.ndarray] = None | |
self._model_sr = int(self.mrt.sample_rate) | |
# style vector (already normalized upstream) | |
self._style_vec = (None if self.params.style_vec is None | |
else np.array(self.params.style_vec, dtype=np.float32, copy=True)) | |
self._chunk_secs = ( | |
self.mrt.config.chunk_length_frames * self.mrt.config.frame_length_samples | |
) / float(self._model_sr) # ≈ 2.0 s by default | |
# target-SR in-RAM spool (what we cut loops from) | |
if int(self.params.target_sr) != int(self._model_sr): | |
self._rs = StreamingResampler(self._model_sr, int(self.params.target_sr), channels=2) | |
else: | |
self._rs = None | |
self._spool = np.zeros((0, 2), dtype=np.float32) # (S,2) target SR | |
self._spool_written = 0 # absolute frames written into spool | |
# bar clock: start with offset 0; if you have a downbeat estimator, set base later | |
self._bar_clock = BarClock(self.params.target_sr, self.params.bpm, self.params.beats_per_bar, base_offset_samples=0) | |
# emission counters | |
self.idx = 0 # next chunk index to *produce* | |
self._next_to_deliver = 0 # next chunk index to hand out via get_next_chunk() | |
self._last_consumed_index = -1 # updated via mark_chunk_consumed(); generation throttle uses this | |
# outbox and synchronization | |
self._outbox: Dict[int, JamChunk] = {} | |
self._cv = threading.Condition() | |
# control flags | |
self._stop_event = threading.Event() | |
self._max_buffer_ahead = 1 | |
# reseed queues (install at next bar boundary after emission) | |
self._pending_reseed: Optional[dict] = None # legacy full reset path (kept for fallback) | |
self._pending_token_splice: Optional[dict] = None # seamless token splice | |
# Prepare initial context from combined loop (best musical alignment) | |
if self.params.combined_loop is not None: | |
self._install_context_from_loop(self.params.combined_loop) | |
# ---------- lifecycle ---------- | |
def set_buffer_seconds(self, seconds: float): | |
"""Clamp how far ahead we allow, in *seconds* of audio.""" | |
chunk_secs = float(self.params.bars_per_chunk) * self._bar_clock.seconds_per_bar() | |
max_chunks = max(0, int(round(seconds / max(chunk_secs, 1e-6)))) | |
with self._cv: | |
self._max_buffer_ahead = max_chunks | |
def set_buffer_chunks(self, k: int): | |
with self._cv: | |
self._max_buffer_ahead = max(0, int(k)) | |
def stop(self): | |
self._stop_event.set() | |
# FastAPI reads this to block until the next sequential chunk is ready | |
def get_next_chunk(self, timeout: float = 30.0) -> Optional[JamChunk]: | |
deadline = time.time() + timeout | |
with self._cv: | |
while True: | |
c = self._outbox.get(self._next_to_deliver) | |
if c is not None: | |
self._next_to_deliver += 1 | |
return c | |
remaining = deadline - time.time() | |
if remaining <= 0: | |
return None | |
self._cv.wait(timeout=min(0.25, remaining)) | |
def mark_chunk_consumed(self, chunk_index: int): | |
# This lets the generator run ahead, but not too far | |
with self._cv: | |
self._last_consumed_index = max(self._last_consumed_index, int(chunk_index)) | |
# purge old chunks to cap memory | |
for k in list(self._outbox.keys()): | |
if k < self._last_consumed_index - 1: | |
self._outbox.pop(k, None) | |
def update_knobs(self, *, guidance_weight=None, temperature=None, topk=None): | |
with self._lock: | |
if guidance_weight is not None: | |
self.params.guidance_weight = float(guidance_weight) | |
if temperature is not None: | |
self.params.temperature = float(temperature) | |
if topk is not None: | |
self.params.topk = int(topk) | |
# push into mrt | |
self.mrt.guidance_weight = float(self.params.guidance_weight) | |
self.mrt.temperature = float(self.params.temperature) | |
self.mrt.topk = int(self.params.topk) | |
# ---------- context / reseed ---------- | |
def _expected_token_shape(self) -> Tuple[int, int]: | |
F = int(self._ctx_frames) | |
D = int(self.mrt.config.decoder_codec_rvq_depth) | |
return F, D | |
def _coerce_tokens(self, toks: np.ndarray) -> np.ndarray: | |
"""Force tokens to (context_length_frames, rvq_depth), padding/trimming as needed. | |
Pads missing frames by repeating the last frame (safer than zeros for RVQ stacks).""" | |
F, D = self._expected_token_shape() | |
if toks.ndim != 2: | |
toks = np.atleast_2d(toks) | |
# depth first | |
if toks.shape[1] > D: | |
toks = toks[:, :D] | |
elif toks.shape[1] < D: | |
pad_cols = np.tile(toks[:, -1:], (1, D - toks.shape[1])) | |
toks = np.concatenate([toks, pad_cols], axis=1) | |
# frames | |
if toks.shape[0] < F: | |
if toks.shape[0] == 0: | |
toks = np.zeros((1, D), dtype=np.int32) | |
pad = np.repeat(toks[-1:, :], F - toks.shape[0], axis=0) | |
toks = np.concatenate([pad, toks], axis=0) | |
elif toks.shape[0] > F: | |
toks = toks[-F:, :] | |
if toks.dtype != np.int32: | |
toks = toks.astype(np.int32, copy=False) | |
return toks | |
def _encode_exact_context_tokens(self, loop: au.Waveform) -> np.ndarray: | |
"""Build *exactly* context_length_frames worth of tokens (e.g., 250 @ 25fps), | |
while ensuring the *end* of the audio lands on a bar boundary. | |
Strategy: take the largest integer number of bars <= ctx_seconds as the tail, | |
then left-fill from just before that tail (wrapping if needed) to reach exactly | |
ctx_seconds; finally, pad/trim to exact samples and, as a last resort, pad/trim | |
tokens to the expected frame count. | |
""" | |
wav = loop.as_stereo().resample(self._model_sr) | |
data = wav.samples.astype(np.float32, copy=False) | |
if data.ndim == 1: | |
data = data[:, None] | |
spb = self._bar_clock.seconds_per_bar() | |
ctx_sec = float(self._ctx_seconds) | |
sr = int(self._model_sr) | |
# bars that fit fully inside ctx_sec (at least 1) | |
bars_fit = max(1, int(ctx_sec // spb)) | |
tail_len_samps = int(round(bars_fit * spb * sr)) | |
# ensure we have enough source by tiling | |
need = int(round(ctx_sec * sr)) + tail_len_samps | |
if data.shape[0] == 0: | |
data = np.zeros((1, 2), dtype=np.float32) | |
reps = int(np.ceil(need / float(data.shape[0]))) | |
tiled = np.tile(data, (reps, 1)) | |
end = tiled.shape[0] | |
tail = tiled[end - tail_len_samps:end] | |
# left-fill to reach exact ctx samples (keeps end-of-bar alignment) | |
ctx_samps = int(round(ctx_sec * sr)) | |
pad_len = ctx_samps - tail.shape[0] | |
if pad_len > 0: | |
pre = tiled[end - tail_len_samps - pad_len:end - tail_len_samps] | |
ctx = np.concatenate([pre, tail], axis=0) | |
else: | |
ctx = tail[-ctx_samps:] | |
# final snap to *exact* ctx samples | |
if ctx.shape[0] < ctx_samps: | |
pad = np.zeros((ctx_samps - ctx.shape[0], ctx.shape[1]), dtype=np.float32) | |
ctx = np.concatenate([pad, ctx], axis=0) | |
elif ctx.shape[0] > ctx_samps: | |
ctx = ctx[-ctx_samps:] | |
exact = au.Waveform(ctx, sr) | |
tokens_full = self.mrt.codec.encode(exact).astype(np.int32) | |
depth = int(self.mrt.config.decoder_codec_rvq_depth) | |
tokens = tokens_full[:, :depth] | |
# Force expected (F,D) at *return time* | |
tokens = self._coerce_tokens(tokens) | |
return tokens | |
def _encode_exact_context_tokens(self, loop: au.Waveform) -> np.ndarray: | |
"""Build *exactly* context_length_frames worth of tokens (e.g., 250 @ 25fps), | |
while ensuring the *end* of the audio lands on a bar boundary. | |
Strategy: take the largest integer number of bars <= ctx_seconds as the tail, | |
then left-fill from just before that tail (wrapping if needed) to reach exactly | |
ctx_seconds; finally, pad/trim to exact samples and, as a last resort, pad/trim | |
tokens to the expected frame count. | |
""" | |
wav = loop.as_stereo().resample(self._model_sr) | |
data = wav.samples.astype(np.float32, copy=False) | |
if data.ndim == 1: | |
data = data[:, None] | |
spb = self._bar_clock.seconds_per_bar() | |
ctx_sec = float(self._ctx_seconds) | |
sr = int(self._model_sr) | |
# bars that fit fully inside ctx_sec (at least 1) | |
bars_fit = max(1, int(ctx_sec // spb)) | |
tail_len_samps = int(round(bars_fit * spb * sr)) | |
# ensure we have enough source by tiling | |
need = int(round(ctx_sec * sr)) + tail_len_samps | |
if data.shape[0] == 0: | |
data = np.zeros((1, 2), dtype=np.float32) | |
reps = int(np.ceil(need / float(data.shape[0]))) | |
tiled = np.tile(data, (reps, 1)) | |
end = tiled.shape[0] | |
tail = tiled[end - tail_len_samps:end] | |
# left-fill to reach exact ctx samples (keeps end-of-bar alignment) | |
ctx_samps = int(round(ctx_sec * sr)) | |
pad_len = ctx_samps - tail.shape[0] | |
if pad_len > 0: | |
pre = tiled[end - tail_len_samps - pad_len:end - tail_len_samps] | |
ctx = np.concatenate([pre, tail], axis=0) | |
else: | |
ctx = tail[-ctx_samps:] | |
# final snap to *exact* ctx samples | |
if ctx.shape[0] < ctx_samps: | |
pad = np.zeros((ctx_samps - ctx.shape[0], ctx.shape[1]), dtype=np.float32) | |
ctx = np.concatenate([pad, ctx], axis=0) | |
elif ctx.shape[0] > ctx_samps: | |
ctx = ctx[-ctx_samps:] | |
exact = au.Waveform(ctx, sr) | |
tokens_full = self.mrt.codec.encode(exact).astype(np.int32) | |
depth = int(self.mrt.config.decoder_codec_rvq_depth) | |
tokens = tokens_full[:, :depth] | |
# Last defense: force expected frame count | |
frames = tokens.shape[0] | |
exp = int(self._ctx_frames) | |
if frames < exp: | |
# repeat last frame | |
pad = np.repeat(tokens[-1:, :], exp - frames, axis=0) | |
tokens = np.concatenate([pad, tokens], axis=0) | |
elif frames > exp: | |
tokens = tokens[-exp:, :] | |
return tokens | |
def _install_context_from_loop(self, loop: au.Waveform): | |
# Build exact-length, bar-locked context tokens | |
context_tokens = self._encode_exact_context_tokens(loop) | |
s = self.mrt.init_state() | |
s.context_tokens = context_tokens | |
self.state = s | |
self._original_context_tokens = np.copy(context_tokens) | |
def reseed_from_waveform(self, wav: au.Waveform): | |
"""Immediate reseed: replace context from provided wave (bar-locked, exact length).""" | |
context_tokens = self._encode_exact_context_tokens(wav) | |
with self._lock: | |
s = self.mrt.init_state() | |
s.context_tokens = context_tokens | |
self.state = s | |
self._model_stream = None # drop model-domain continuity so next chunk starts cleanly | |
self._original_context_tokens = np.copy(context_tokens) | |
def reseed_splice(self, recent_wav: au.Waveform, anchor_bars: float): | |
"""Queue a *seamless* reseed by token splicing instead of full restart. | |
We compute a fresh, bar-locked context token tensor of exact length | |
(e.g., 250 frames), then splice only the *tail* corresponding to | |
`anchor_bars` so generation continues smoothly without resetting state. | |
""" | |
new_ctx = self._encode_exact_context_tokens(recent_wav) # coerce to (F,D) | |
F, D = self._expected_token_shape() | |
# how many frames correspond to the requested anchor bars | |
spb = self._bar_clock.seconds_per_bar() | |
frames_per_bar = max(1, int(round(self._codec_fps * spb))) | |
splice_frames = max(1, min(int(round(max(1.0, float(anchor_bars)) * frames_per_bar)), F)) | |
with self._lock: | |
# snapshot current context | |
cur = getattr(self.state, "context_tokens", None) | |
if cur is None: | |
# fall back to full reseed (still coerced) | |
self._pending_reseed = {"ctx": new_ctx} | |
return | |
cur = self._coerce_tokens(cur) | |
# build the spliced tensor: keep left (F - splice) from cur, take right (splice) from new | |
left = cur[:F - splice_frames, :] | |
right = new_ctx[F - splice_frames:, :] | |
spliced = np.concatenate([left, right], axis=0) | |
spliced = self._coerce_tokens(spliced) | |
# queue for install at the *next bar boundary* right after emission | |
self._pending_token_splice = { | |
"tokens": spliced, | |
"debug": {"F": F, "D": D, "splice_frames": splice_frames, "frames_per_bar": frames_per_bar} | |
} | |
def reseed_from_waveform(self, wav: au.Waveform): | |
"""Immediate reseed: replace context from provided wave (bar-aligned tail).""" | |
wav = wav.as_stereo().resample(self._model_sr) | |
tail = take_bar_aligned_tail(wav, self.params.bpm, self.params.beats_per_bar, self._ctx_seconds) | |
tokens_full = self.mrt.codec.encode(tail).astype(np.int32) | |
depth = int(self.mrt.config.decoder_codec_rvq_depth) | |
context_tokens = tokens_full[:, :depth] | |
s = self.mrt.init_state() | |
s.context_tokens = context_tokens | |
self.state = s | |
# reset model stream so next generate starts cleanly | |
self._model_stream = None | |
# optional loudness match will be applied per-chunk on emission | |
# also remember this as new "original" | |
self._original_context_tokens = np.copy(context_tokens) | |
# ---------- core streaming helpers ---------- | |
def _append_model_chunk_and_spool(self, wav: au.Waveform): | |
"""Crossfade into the model-rate stream and write the *non-overlapped* | |
tail to the target-SR spool.""" | |
s = wav.samples.astype(np.float32, copy=False) | |
if s.ndim == 1: | |
s = s[:, None] | |
sr = self._model_sr | |
xfade_s = float(self.mrt.config.crossfade_length) | |
xfade_n = int(round(max(0.0, xfade_s) * sr)) | |
if self._model_stream is None: | |
# first chunk: drop the preroll (xfade) then spool | |
new_part = s[xfade_n:] if xfade_n < s.shape[0] else s[:0] | |
self._model_stream = new_part.copy() | |
if new_part.size: | |
y = (new_part.astype(np.float32, copy=False) | |
if self._rs is None else | |
self._rs.process(new_part.astype(np.float32, copy=False), final=False)) | |
self._spool = np.concatenate([self._spool, y], axis=0) | |
self._spool_written += y.shape[0] | |
return | |
# crossfade into existing stream | |
if xfade_n > 0 and self._model_stream.shape[0] >= xfade_n and s.shape[0] >= xfade_n: | |
tail = self._model_stream[-xfade_n:] | |
head = s[:xfade_n] | |
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)[:, None] | |
mixed = tail * np.cos(t) + head * np.sin(t) | |
self._model_stream = np.concatenate([self._model_stream[:-xfade_n], mixed, s[xfade_n:]], axis=0) | |
new_part = s[xfade_n:] | |
else: | |
self._model_stream = np.concatenate([self._model_stream, s], axis=0) | |
new_part = s | |
# spool only the *new* non-overlapped part | |
if new_part.size: | |
y = (new_part.astype(np.float32, copy=False) | |
if self._rs is None else | |
self._rs.process(new_part.astype(np.float32, copy=False), final=False)) | |
if y.size: | |
self._spool = np.concatenate([self._spool, y], axis=0) | |
self._spool_written += y.shape[0] | |
def _should_generate_next_chunk(self) -> bool: | |
# Allow running ahead relative to whichever is larger: last *consumed* | |
# (explicit ack from client) or last *delivered* (implicit ack). | |
implicit_consumed = self._next_to_deliver - 1 # last chunk handed to client | |
horizon_anchor = max(self._last_consumed_index, implicit_consumed) | |
return self.idx <= (horizon_anchor + self._max_buffer_ahead) | |
def _emit_ready(self): | |
"""Emit next chunk(s) if the spool has enough samples.""" | |
while True: | |
start, end = self._bar_clock.bounds_for_chunk(self.idx, self.params.bars_per_chunk) | |
if end > self._spool_written: | |
break # need more audio | |
loop = self._spool[start:end] | |
# Loudness match to reference loop (optional) | |
if self.params.ref_loop is not None and self.params.loudness_mode != "none": | |
ref = self.params.ref_loop.as_stereo().resample(self.params.target_sr) | |
wav = au.Waveform(loop.copy(), int(self.params.target_sr)) | |
matched, _ = match_loudness_to_reference(ref, wav, method=self.params.loudness_mode, headroom_db=self.params.headroom_db) | |
loop = matched.samples | |
audio_b64, total_samples, channels = wav_bytes_base64(loop, int(self.params.target_sr)) | |
meta = { | |
"bpm": float(self.params.bpm), | |
"bars": int(self.params.bars_per_chunk), | |
"beats_per_bar": int(self.params.beats_per_bar), | |
"sample_rate": int(self.params.target_sr), | |
"channels": int(channels), | |
"total_samples": int(total_samples), | |
"seconds_per_bar": self._bar_clock.seconds_per_bar(), | |
"loop_duration_seconds": self.params.bars_per_chunk * self._bar_clock.seconds_per_bar(), | |
"guidance_weight": float(self.params.guidance_weight), | |
"temperature": float(self.params.temperature), | |
"topk": int(self.params.topk), | |
} | |
chunk = JamChunk(index=self.idx, audio_base64=audio_b64, metadata=meta) | |
with self._cv: | |
self._outbox[self.idx] = chunk | |
self._cv.notify_all() | |
self.idx += 1 | |
# If a reseed is queued, install it *right after* we finish a chunk | |
with self._lock: | |
# Prefer seamless token splice when available | |
if self._pending_token_splice is not None: | |
spliced = self._coerce_tokens(self._pending_token_splice["tokens"]) | |
try: | |
# inplace update (no reset) | |
self.state.context_tokens = spliced | |
self._pending_token_splice = None | |
except Exception: | |
# fallback: full reseed using spliced tokens | |
new_state = self.mrt.init_state() | |
new_state.context_tokens = spliced | |
self.state = new_state | |
self._model_stream = None | |
self._pending_token_splice = None | |
elif self._pending_reseed is not None: | |
ctx = self._coerce_tokens(self._pending_reseed["ctx"]) | |
new_state = self.mrt.init_state() | |
new_state.context_tokens = ctx | |
self.state = new_state | |
self._model_stream = None | |
self._pending_reseed = None | |
# ---------- main loop ---------- | |
def run(self): | |
# generate until stopped | |
while not self._stop_event.is_set(): | |
# throttle generation if we are far ahead | |
if not self._should_generate_next_chunk(): | |
# still try to emit if spool already has enough | |
self._emit_ready() | |
time.sleep(0.01) | |
continue | |
# generate next model chunk | |
# snapshot current style vector under lock for this step | |
with self._lock: | |
target = self.params.style_vec | |
if target is None: | |
style_to_use = None | |
else: | |
if self._style_vec is None: # first use: start exactly at initial style (no glide) | |
self._style_vec = np.array(target, dtype=np.float32, copy=True) | |
else: | |
ramp = float(self.params.style_ramp_seconds or 0.0) | |
step = 1.0 if ramp <= 0.0 else min(1.0, self._chunk_secs / ramp) | |
# linear ramp in embedding space | |
self._style_vec += step * (target.astype(np.float32, copy=False) - self._style_vec) | |
style_to_use = self._style_vec | |
wav, self.state = self.mrt.generate_chunk(state=self.state, style=style_to_use) | |
# append and spool | |
self._append_model_chunk_and_spool(wav) | |
# try emitting zero or more chunks if available | |
self._emit_ready() | |
# finalize resampler (flush) — not strictly necessary here | |
tail = self._rs.process(np.zeros((0,2), np.float32), final=True) | |
if tail.size: | |
self._spool = np.concatenate([self._spool, tail], axis=0) | |
self._spool_written += tail.shape[0] | |
# one last emit attempt | |
self._emit_ready() | |