File size: 32,085 Bytes
d1afbc8 184daaa 8cedcd0 d1afbc8 c188e5c d1afbc8 c188e5c d1afbc8 c188e5c eb5d99b d1afbc8 c188e5c d1afbc8 c188e5c b1bc032 d1afbc8 8cedcd0 d1afbc8 8cedcd0 d1afbc8 8cedcd0 d1afbc8 8cedcd0 d1afbc8 8cedcd0 d1afbc8 8cedcd0 d41a575 8cedcd0 d1afbc8 8cedcd0 d1afbc8 8cedcd0 d1afbc8 184daaa 8cedcd0 d41a575 8cedcd0 a9330a3 8cedcd0 a9330a3 d41a575 a9330a3 8cedcd0 a9330a3 8cedcd0 a9330a3 8cedcd0 bf8ae4c a9330a3 8cedcd0 bf8ae4c 8cedcd0 bf8ae4c 8cedcd0 a9330a3 bf8ae4c 8cedcd0 bf8ae4c 8cedcd0 bf8ae4c 8cedcd0 bf8ae4c 8cedcd0 a9330a3 bf8ae4c a9330a3 bf8ae4c 8cedcd0 bf8ae4c 8cedcd0 6460c54 8cedcd0 783cbeb 8cedcd0 783cbeb 8cedcd0 b1bc032 8cedcd0 b1bc032 8cedcd0 b1bc032 8cedcd0 d1afbc8 e686e92 4587340 e686e92 1b98b73 e686e92 184daaa e686e92 d1afbc8 e686e92 1b98b73 1f74f2f 1b98b73 e686e92 1f74f2f e686e92 1b98b73 e686e92 1f74f2f e686e92 b1bc032 eb5d99b e686e92 eb5d99b e686e92 1b98b73 e686e92 eb5d99b e686e92 1b98b73 e686e92 d1afbc8 e686e92 1b98b73 eb5d99b e686e92 1b98b73 d1afbc8 e686e92 b1bc032 1f74f2f e686e92 1f74f2f e686e92 1f74f2f e686e92 1f74f2f b1bc032 e686e92 1f74f2f b1bc032 e686e92 1f74f2f d1afbc8 e686e92 1f74f2f e686e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
# jam_worker.py - SIMPLE FIX VERSION
import threading, time, base64, io, uuid
from dataclasses import dataclass, field
import numpy as np
import soundfile as sf
from magenta_rt import audio as au
from threading import RLock
from utils import (
match_loudness_to_reference, stitch_generated, hard_trim_seconds,
apply_micro_fades, make_bar_aligned_context, take_bar_aligned_tail,
resample_and_snap, wav_bytes_base64
)
@dataclass
class JamParams:
bpm: float
beats_per_bar: int
bars_per_chunk: int
target_sr: int
loudness_mode: str = "auto"
headroom_db: float = 1.0
style_vec: np.ndarray | None = None
ref_loop: any = None
combined_loop: any = None
guidance_weight: float = 1.1
temperature: float = 1.1
topk: int = 40
@dataclass
class JamChunk:
index: int
audio_base64: str
metadata: dict
class JamWorker(threading.Thread):
def __init__(self, mrt, params: JamParams):
super().__init__(daemon=True)
self.mrt = mrt
self.params = params
self.state = mrt.init_state()
# ✅ init synchronization + placeholders FIRST
self._lock = threading.Lock()
self._original_context_tokens = None # so hasattr checks are cheap/clear
if params.combined_loop is not None:
self._setup_context_from_combined_loop()
self.idx = 0
self.outbox: list[JamChunk] = []
self._stop_event = threading.Event()
self._stream = None
self._next_emit_start = 0
# NEW: Track delivery state
self._last_delivered_index = 0
self._max_buffer_ahead = 5
# Timing info
self.last_chunk_started_at = None
self.last_chunk_completed_at = None
self._pending_reseed = None # {"ctx": np.ndarray, "ref": au.Waveform|None}
self._needs_bar_realign = False # request a one-shot downbeat alignment
self._reseed_ref_loop = None # which loop to align against after reseed
def _setup_context_from_combined_loop(self):
"""Set up MRT context tokens from the combined loop audio"""
try:
from utils import make_bar_aligned_context, take_bar_aligned_tail
codec_fps = float(self.mrt.codec.frame_rate)
ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps
loop_for_context = take_bar_aligned_tail(
self.params.combined_loop,
self.params.bpm,
self.params.beats_per_bar,
ctx_seconds
)
tokens_full = self.mrt.codec.encode(loop_for_context).astype(np.int32)
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth]
context_tokens = make_bar_aligned_context(
tokens,
bpm=self.params.bpm,
fps=float(self.mrt.codec.frame_rate), # keep fractional fps
ctx_frames=self.mrt.config.context_length_frames,
beats_per_bar=self.params.beats_per_bar
)
# Install fresh context
self.state.context_tokens = context_tokens
print(f"✅ JamWorker: Set up fresh context from combined loop")
# NEW: keep a copy of the *original* context tokens for future splice-reseed
# (guard so we only set this once, at jam start)
with self._lock:
if not hasattr(self, "_original_context_tokens") or self._original_context_tokens is None:
self._original_context_tokens = np.copy(context_tokens) # shape: [T, depth]
except Exception as e:
print(f"❌ Failed to setup context from combined loop: {e}")
def stop(self):
self._stop_event.set()
def update_knobs(self, *, guidance_weight=None, temperature=None, topk=None):
with self._lock:
if guidance_weight is not None: self.params.guidance_weight = float(guidance_weight)
if temperature is not None: self.params.temperature = float(temperature)
if topk is not None: self.params.topk = int(topk)
def get_next_chunk(self) -> JamChunk | None:
"""Get the next sequential chunk (blocks/waits if not ready)"""
target_index = self._last_delivered_index + 1
# Wait for the target chunk to be ready (with timeout)
max_wait = 30.0 # seconds
start_time = time.time()
while time.time() - start_time < max_wait and not self._stop_event.is_set():
with self._lock:
# Look for the exact chunk we need
for chunk in self.outbox:
if chunk.index == target_index:
self._last_delivered_index = target_index
print(f"📦 Delivered chunk {target_index}")
return chunk
# Not ready yet, wait a bit
time.sleep(0.1)
# Timeout or stopped
return None
def mark_chunk_consumed(self, chunk_index: int):
"""Mark a chunk as consumed by the frontend"""
with self._lock:
self._last_delivered_index = max(self._last_delivered_index, chunk_index)
print(f"✅ Chunk {chunk_index} consumed")
def _should_generate_next_chunk(self) -> bool:
"""Check if we should generate the next chunk (don't get too far ahead)"""
with self._lock:
# Don't generate if we're already too far ahead
if self.idx > self._last_delivered_index + self._max_buffer_ahead:
return False
return True
def _seconds_per_bar(self) -> float:
return self.params.beats_per_bar * (60.0 / self.params.bpm)
def _snap_and_encode(self, y, seconds, target_sr, bars):
cur_sr = int(self.mrt.sample_rate)
x = y.samples if y.samples.ndim == 2 else y.samples[:, None]
x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=seconds)
b64, total_samples, channels = wav_bytes_base64(x, target_sr)
meta = {
"bpm": int(round(self.params.bpm)),
"bars": int(bars),
"beats_per_bar": int(self.params.beats_per_bar),
"sample_rate": int(target_sr),
"channels": channels,
"total_samples": total_samples,
"seconds_per_bar": self._seconds_per_bar(),
"loop_duration_seconds": bars * self._seconds_per_bar(),
"guidance_weight": self.params.guidance_weight,
"temperature": self.params.temperature,
"topk": self.params.topk,
}
return b64, meta
def _append_model_chunk_to_stream(self, wav):
"""Incrementally append a model chunk with equal-power crossfade."""
xfade_s = float(self.mrt.config.crossfade_length)
sr = int(self.mrt.sample_rate)
xfade_n = int(round(xfade_s * sr))
s = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]
if getattr(self, "_stream", None) is None:
# First chunk: drop model pre-roll (xfade head)
if s.shape[0] > xfade_n:
self._stream = s[xfade_n:].astype(np.float32, copy=True)
else:
self._stream = np.zeros((0, s.shape[1]), dtype=np.float32)
self._next_emit_start = 0 # pointer into _stream (model SR samples)
return
# Crossfade last xfade_n samples of _stream with head of new s
if s.shape[0] <= xfade_n or self._stream.shape[0] < xfade_n:
# Degenerate safeguard
self._stream = np.concatenate([self._stream, s], axis=0)
return
tail = self._stream[-xfade_n:]
head = s[:xfade_n]
# Equal-power envelopes
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)[:, None]
eq_in, eq_out = np.sin(t), np.cos(t)
mixed = tail * eq_out + head * eq_in
self._stream = np.concatenate([self._stream[:-xfade_n], mixed, s[xfade_n:]], axis=0)
def reseed_from_waveform(self, wav):
# 1) Re-init state
new_state = self.mrt.init_state()
# 2) Build bar-aligned context tokens from provided audio
codec_fps = float(self.mrt.codec.frame_rate)
ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps
from utils import take_bar_aligned_tail, make_bar_aligned_context
tail = take_bar_aligned_tail(wav, self.params.bpm, self.params.beats_per_bar, ctx_seconds)
tokens_full = self.mrt.codec.encode(tail).astype(np.int32)
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth]
context_tokens = make_bar_aligned_context(tokens,
bpm=self.params.bpm, fps=float(self.mrt.codec.frame_rate),
ctx_frames=self.mrt.config.context_length_frames,
beats_per_bar=self.params.beats_per_bar
)
new_state.context_tokens = context_tokens
self.state = new_state
self._prepare_stream_for_reseed_handoff()
def _frames_per_bar(self) -> int:
# codec frame-rate (frames/s) -> frames per musical bar
fps = float(self.mrt.codec.frame_rate)
sec_per_bar = (60.0 / float(self.params.bpm)) * float(self.params.beats_per_bar)
return int(round(fps * sec_per_bar))
def _ctx_frames(self) -> int:
# how many codec frames fit in the model’s conditioning window
return int(self.mrt.config.context_length_frames)
def _make_recent_tokens_from_wave(self, wav) -> np.ndarray:
"""
Encode waveform and produce a BAR-ALIGNED context token window.
"""
tokens_full = self.mrt.codec.encode(wav).astype(np.int32) # [T, rvq_total]
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth]
from utils import make_bar_aligned_context
ctx = make_bar_aligned_context(
tokens,
bpm=self.params.bpm,
fps=float(self.mrt.codec.frame_rate), # keep fractional fps
ctx_frames=self.mrt.config.context_length_frames,
beats_per_bar=self.params.beats_per_bar
)
return ctx
def _bar_aligned_tail(self, tokens: np.ndarray, bars: float) -> np.ndarray:
"""
Take a tail slice that is an integer number of codec frames corresponding to `bars`.
We round to nearest frame to stay phase-consistent with codec grid.
"""
frames_per_bar = self._frames_per_bar()
want = max(frames_per_bar * int(round(bars)), 0)
if want == 0:
return tokens[:0] # empty
if tokens.shape[0] <= want:
return tokens
return tokens[-want:]
def _splice_context(self, original_tokens: np.ndarray, recent_tokens: np.ndarray,
anchor_bars: float) -> np.ndarray:
import math
ctx_frames = self._ctx_frames()
depth = original_tokens.shape[1]
frames_per_bar = self._frames_per_bar()
# 1) Anchor tail (whole bars)
anchor = self._bar_aligned_tail(original_tokens, math.floor(anchor_bars))
# 2) Fill remainder with recent (prefer whole bars)
a = anchor.shape[0]
remain = max(ctx_frames - a, 0)
recent = recent_tokens[:0]
used_recent = 0 # frames taken from the END of recent_tokens
if remain > 0:
bars_fit = remain // frames_per_bar
if bars_fit >= 1:
want_recent_frames = int(bars_fit * frames_per_bar)
used_recent = min(want_recent_frames, recent_tokens.shape[0])
recent = recent_tokens[-used_recent:] if used_recent > 0 else recent_tokens[:0]
else:
used_recent = min(remain, recent_tokens.shape[0])
recent = recent_tokens[-used_recent:] if used_recent > 0 else recent_tokens[:0]
# 3) Concat in order [anchor, recent]
if anchor.size or recent.size:
out = np.concatenate([anchor, recent], axis=0)
else:
# fallback: just take the last ctx window from recent
out = recent_tokens[-ctx_frames:]
# 4) Trim if we overshot
if out.shape[0] > ctx_frames:
out = out[-ctx_frames:]
# 5) Snap the **END** to the nearest LOWER bar boundary
if frames_per_bar > 0:
max_bar_aligned = (out.shape[0] // frames_per_bar) * frames_per_bar
else:
max_bar_aligned = out.shape[0]
if max_bar_aligned > 0 and out.shape[0] != max_bar_aligned:
out = out[-max_bar_aligned:]
# 6) Left-fill to reach ctx_frames **without moving the END**
deficit = ctx_frames - out.shape[0]
if deficit > 0:
left_parts = []
# Prefer frames immediately BEFORE the region we used from 'recent_tokens'
if used_recent < recent_tokens.shape[0]:
take = min(deficit, recent_tokens.shape[0] - used_recent)
if used_recent > 0:
left_parts.append(recent_tokens[-(used_recent + take) : -used_recent])
else:
left_parts.append(recent_tokens[-take:])
# Then take frames immediately BEFORE the 'anchor' in original_tokens
if sum(p.shape[0] for p in left_parts) < deficit and anchor.shape[0] > 0:
need = deficit - sum(p.shape[0] for p in left_parts)
a_len = anchor.shape[0]
avail = max(original_tokens.shape[0] - a_len, 0)
take2 = min(need, avail)
if take2 > 0:
left_parts.append(original_tokens[-(a_len + take2) : -a_len])
# Still short? tile from what's available
have = sum(p.shape[0] for p in left_parts)
if have < deficit:
base = out if out.shape[0] > 0 else (recent_tokens if recent_tokens.shape[0] > 0 else original_tokens)
reps = int(np.ceil((deficit - have) / max(1, base.shape[0])))
left_parts.append(np.tile(base, (reps, 1))[: (deficit - have)])
left = np.concatenate(left_parts, axis=0)
out = np.concatenate([left[-deficit:], out], axis=0)
# 7) Final guard to exact length
if out.shape[0] > ctx_frames:
out = out[-ctx_frames:]
elif out.shape[0] < ctx_frames:
reps = int(np.ceil(ctx_frames / max(1, out.shape[0])))
out = np.tile(out, (reps, 1))[-ctx_frames:]
# 8) Depth guard
if out.shape[1] != depth:
out = out[:, :depth]
return out
def _realign_emit_pointer_to_bar(self, sr_model: int):
"""Advance _next_emit_start to the next bar boundary in model-sample space."""
bar_samps = int(round(self._seconds_per_bar() * sr_model))
if bar_samps <= 0:
return
phase = self._next_emit_start % bar_samps
if phase != 0:
self._next_emit_start += (bar_samps - phase)
def _prepare_stream_for_reseed_handoff(self):
# OLD: keep crossfade tail -> causes phase offset
# sr = int(self.mrt.sample_rate)
# xfade_s = float(self.mrt.config.crossfade_length)
# xfade_n = int(round(xfade_s * sr))
# if getattr(self, "_stream", None) is not None and self._stream.shape[0] > 0:
# tail = self._stream[-xfade_n:] if self._stream.shape[0] > xfade_n else self._stream
# self._stream = tail.copy()
# else:
# self._stream = None
# NEW: throw away the tail completely; start fresh
self._stream = None
self._next_emit_start = 0
self._needs_bar_realign = True
def reseed_splice(self, recent_wav, anchor_bars: float):
"""
Token-splice reseed queued for the next bar boundary between chunks.
"""
with self._lock:
if not hasattr(self, "_original_context_tokens") or self._original_context_tokens is None:
self._original_context_tokens = np.copy(self.state.context_tokens)
recent_tokens = self._make_recent_tokens_from_wave(recent_wav) # [T, depth]
new_ctx = self._splice_context(self._original_context_tokens, recent_tokens, anchor_bars)
# Queue it; the run loop will install right after we finish the current slice
self._pending_reseed = {"ctx": new_ctx, "ref": recent_wav}
# install the new context window
new_state = self.mrt.init_state()
new_state.context_tokens = new_ctx
self.state = new_state
self._prepare_stream_for_reseed_handoff()
# optional: ask streamer to drop an intro crossfade worth of audio right after reseed
self._pending_drop_intro_bars = getattr(self, "_pending_drop_intro_bars", 0) + 1
def run(self):
"""
Main worker loop:
• Generate continuous audio at model/native SR (sr_in).
• Maintain input-domain emit pointer for groove realign.
• Maintain an OUTPUT-domain streaming resampler (sr_out = 44100 by default).
• Emit EXACTLY bars_per_chunk at sr_out using a fractional phase accumulator.
• No per-chunk resampling; resampler carries state across chunks => seamless.
"""
import numpy as np
import time
from math import floor, ceil
from utils import wav_bytes_base64, match_loudness_to_reference, apply_micro_fades
# ---------- Session timing ----------
spb = self._seconds_per_bar() # seconds per bar
chunk_secs = float(self.params.bars_per_chunk) * float(spb) # seconds per emitted chunk
# ---------- Sample rates ----------
sr_in = int(self.mrt.sample_rate) # model/native SR (e.g., 48000)
sr_out = int(getattr(self.params, "target_sr", 44100) or 44100) # desired client SR (44.1k by default)
self.params.target_sr = sr_out # reflect back in metadata
# ---------- Crossfade (model-side stitching), seconds ----------
xfade_seconds = float(self.mrt.config.crossfade_length)
# ---------- INPUT-domain emit step (used for groove realign + generation need) ----------
chunk_step_in_f = chunk_secs * sr_in # float samples per chunk (input domain)
self._emit_phase = float(getattr(self, "_emit_phase", 0.0)) # carry across loops
# ---------- OUTPUT-domain emit step (controls exact client length) ----------
chunk_step_out_f = chunk_secs * sr_out
self._emit_phase_out = float(getattr(self, "_emit_phase_out", 0.0))
self._next_emit_start_out = int(getattr(self, "_next_emit_start_out", 0))
# ---------- Continuous resampler state (into sr_out) ----------
self._resampler = None
self._stream_out = np.zeros((0, int(self.params.channels or 2)), dtype=np.float32)
if sr_out != sr_in:
# Lazy import to avoid hard dep if not needed
from utils import StreamingResampler
ch = int(self.params.channels or 2)
self._resampler = StreamingResampler(in_sr=sr_in, out_sr=sr_out, channels=ch, quality="VHQ")
# ---------- INPUT stream / pointers ----------
# self._stream: np.ndarray (S_in, C) grows as we generate
# self._next_emit_start: input-domain pointer we realign to bar boundary once at start / reseed
self._stream = getattr(self, "_stream", None)
self._next_emit_start = int(getattr(self, "_next_emit_start", 0))
self._needs_bar_realign = bool(getattr(self, "_needs_bar_realign", True))
# How much of INPUT we have already fed into the resampler (in samples @ sr_in)
input_consumed = int(getattr(self, "_input_consumed", 0))
# Delivery bookkeeping
self.idx = int(getattr(self, "idx", 0))
self._last_delivered_index = int(getattr(self, "_last_delivered_index", 0))
self.outbox = getattr(self, "outbox", [])
print("🚀 JamWorker started (bar-aligned streaming, stateful resampler)…")
# ---------- Helpers inside run() ----------
def _need_input(first_chunk_extra: bool = False) -> int:
"""
How many INPUT-domain samples we still need in self._stream to be comfortable
before emitting the next slice. Mirrors your fractional step math without
mutating _emit_phase here.
"""
total = 0 if self._stream is None else self._stream.shape[0]
start = int(getattr(self, "_next_emit_start", 0))
have = max(0, total - start)
# Integer step we will advance by (input domain), non-mutating:
step_int = int(floor(chunk_step_in_f + float(getattr(self, "_emit_phase", 0.0))))
want = step_int
if first_chunk_extra:
# reserve 2 extra bars for downbeat/onset alignment safety
want += int(ceil(2.0 * spb * sr_in))
return max(0, want - have)
def _feed_resampler_as_needed():
"""
Ensure OUTPUT buffer (_stream_out) has resampled audio for any new INPUT
samples appended to self._stream since we last consumed it.
"""
nonlocal input_consumed, sr_in, sr_out
total_in = 0 if self._stream is None else self._stream.shape[0]
if total_in <= input_consumed:
return # nothing new to feed
# Slice the new INPUT region and push through streaming resampler (or pass-through)
new_in = self._stream[input_consumed:total_in]
if new_in.size == 0:
return
if self._resampler is not None:
y_out = self._resampler.process(new_in, final=False)
else:
# No resampling needed; alias output to input
y_out = new_in
if y_out.size:
self._stream_out = y_out if self._stream_out.size == 0 else np.vstack([self._stream_out, y_out])
input_consumed = total_in # we've fed all available input into the (re)sampler
def _output_have():
"""How many OUTPUT-domain samples are available to emit from current pointer."""
total_out = 0 if self._stream_out is None else self._stream_out.shape[0]
return max(0, total_out - self._next_emit_start_out)
def _compute_step_in() -> int:
"""Integer input-domain step for internal pointer (non-mutating)."""
return int(floor(chunk_step_in_f + float(getattr(self, "_emit_phase", 0.0))))
def _compute_step_out() -> int:
"""Integer output-domain step for emission (non-mutating)."""
return int(floor(chunk_step_out_f + float(getattr(self, "_emit_phase_out", 0.0))))
def _advance_input_pointer():
"""Advance input emit pointer by the integer step and carry fractional phase."""
step_total = chunk_step_in_f + self._emit_phase
step_int = int(floor(step_total))
self._emit_phase = float(step_total - step_int)
self._next_emit_start += step_int
def _advance_output_pointer():
"""Advance output emit pointer by the integer step and carry fractional phase."""
step_total = chunk_step_out_f + self._emit_phase_out
step_int = int(floor(step_total))
self._emit_phase_out = float(step_total - step_int)
self._next_emit_start_out += step_int
def _trim_buffers_if_needed():
"""
Keep memory bounded by dropping already-emitted OUTPUT and corresponding INPUT,
while keeping indices consistent.
"""
# Drop OUTPUT head
if self._next_emit_start_out > 3 * int(chunk_step_out_f or sr_out):
cut = int(self._next_emit_start_out)
self._stream_out = self._stream_out[cut:]
self._next_emit_start_out -= cut
# Drop INPUT head **only** if we've consumed it into resampler AND it's before emit start
# (emit start is for alignment math; after first chunk we keep advancing anyway)
head_can_drop = min(input_consumed, self._next_emit_start)
if head_can_drop > sr_in * 8: # keep a few bars as safety
drop = head_can_drop - int(sr_in * 4)
if drop > 0:
self._stream = self._stream[drop:]
self._next_emit_start -= drop
input_consumed -= drop
# ---------- Main loop ----------
while not self._stop_event.is_set():
# Throttle if we're too far ahead of the consumer
if not self._should_generate_next_chunk():
time.sleep(0.25)
continue
# 1) Ensure we have enough INPUT material for the next slice (and first-chunk extra)
need_in = _need_input(first_chunk_extra=(self.idx == 0))
while need_in > 0 and not self._stop_event.is_set():
# Model generation step; xfade into persistent INPUT stream
with self._lock:
style_vec = self.params.style_vec
self.mrt.guidance_weight = float(self.params.guidance_weight)
self.mrt.temperature = float(self.params.temperature)
self.mrt.topk = int(self.params.topk)
wav, self.state = self.mrt.generate_chunk(state=self.state, style=style_vec)
self._append_model_chunk_to_stream(wav) # equal-power crossfade into self._stream
# Feed any newly appended INPUT into the OUTPUT resampler
_feed_resampler_as_needed()
need_in = _need_input(first_chunk_extra=(self.idx == 0))
if self._stop_event.is_set():
break
# 2) One-time: tempo/bar realign in INPUT domain before emitting the *first* chunk
if self._needs_bar_realign:
self._realign_emit_pointer_to_bar(sr_in)
self._emit_phase = 0.0 # reset input fractional phase after snapping to grid
# Set INPUT→RESAMPLER start so the very first OUTPUT sample corresponds to _next_emit_start
input_consumed = max(input_consumed, self._next_emit_start)
self._needs_bar_realign = False
# Feed any post-snap INPUT into OUTPUT resampler so we have aligned OUTPUT available
_feed_resampler_as_needed()
# 3) Ensure OUTPUT buffer has enough samples for the next emission step
step_out_int = _compute_step_out()
while _output_have() < step_out_int and not self._stop_event.is_set():
# If OUTPUT is short, try feeding more INPUT into resampler; if INPUT has no new data, generate more
_feed_resampler_as_needed()
if _output_have() < step_out_int:
# generate another model chunk
with self._lock:
style_vec = self.params.style_vec
self.mrt.guidance_weight = float(self.params.guidance_weight)
self.mrt.temperature = float(self.params.temperature)
self.mrt.topk = int(self.params.topk)
wav, self.state = self.mrt.generate_chunk(state=self.state, style=style_vec)
self._append_model_chunk_to_stream(wav)
_feed_resampler_as_needed()
if self._stop_event.is_set():
break
# 4) Slice OUTPUT-domain chunk exactly step_out_int long and (optionally) loudness-align the first one
start_out = int(self._next_emit_start_out)
end_out = start_out + int(step_out_int)
total_out = 0 if self._stream_out is None else self._stream_out.shape[0]
if end_out > total_out:
# Should be rare due to loop above, but guard anyway
time.sleep(0.01)
continue
y_send = self._stream_out[start_out:end_out]
if self.idx == 0 and getattr(self.params, "ref_loop", None) is not None:
# First chunk: match loudness to reference if requested
y_send, _ = match_loudness_to_reference(
self.params.ref_loop, y_send,
method=getattr(self.params, "loudness_mode", "integrated"),
headroom_db=getattr(self.params, "headroom_db", 1.0),
)
else:
# With a continuous stateful resampler, no per-chunk fades are needed.
# If you *really* want safety fades, do 1 ms only on first/last when stopping.
pass
# 5) Encode WAV (already exact length at sr_out)
b64, total_samples, channels = wav_bytes_base64(y_send, sr_out)
meta = {
"bpm": float(self.params.bpm),
"bars": int(self.params.bars_per_chunk),
"seconds": float(chunk_secs),
"sample_rate": int(sr_out),
"samples": int(total_samples),
"channels": int(channels),
"xfade_seconds": float(xfade_seconds),
}
# 6) Publish + advance both emit pointers
with self._lock:
self.idx += 1
self.outbox.append(JamChunk(index=self.idx, audio_base64=b64, metadata=meta))
# prune outbox to keep memory in check
if len(self.outbox) > 10:
cutoff = self._last_delivered_index - 5
self.outbox = [ch for ch in self.outbox if ch.index > cutoff]
# Handle reseed requests BETWEEN chunks
if getattr(self, "_pending_reseed", None) is not None:
pkg = self._pending_reseed
self._pending_reseed = None
# Reset model state with fresh bar-aligned context tokens
new_state = self.mrt.init_state()
new_state.context_tokens = pkg["ctx"]
self.state = new_state
# Reset INPUT stream and schedule one-time bar realign
self._stream = None
self._next_emit_start = 0
self._reseed_ref_loop = pkg.get("ref") or self.params.combined_loop
self._needs_bar_realign = True
# Reset OUTPUT-domain streaming state
self._stream_out = np.zeros((0, int(self.params.channels or 2)), dtype=np.float32)
self._next_emit_start_out = 0
self._emit_phase_out = 0.0
input_consumed = 0
if self._resampler is not None:
# Rebuild the resampler to clear its filter tail
from utils import StreamingResampler
ch = int(self.params.channels or 2)
self._resampler = StreamingResampler(in_sr=sr_in, out_sr=sr_out, channels=ch, quality="VHQ")
print("🔁 Reseed installed at bar boundary; will realign before next slice")
# Advance both emit pointers for next round
_advance_input_pointer()
_advance_output_pointer()
# Keep memory tidy
_trim_buffers_if_needed()
print(f"✅ Completed chunk {self.idx}")
# Stop: flush tail from resampler (optional)
if self._resampler is not None:
tail = self._resampler.flush()
if tail.size:
self._stream_out = tail if self._stream_out.size == 0 else np.vstack([self._stream_out, tail])
print("🛑 JamWorker stopped")
|