File size: 10,951 Bytes
d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa d1afbc8 184daaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# jam_worker.py - SIMPLE FIX VERSION
import threading, time, base64, io, uuid
from dataclasses import dataclass, field
import numpy as np
import soundfile as sf
from magenta_rt import audio as au
from utils import (
match_loudness_to_reference, stitch_generated, hard_trim_seconds,
apply_micro_fades, make_bar_aligned_context, take_bar_aligned_tail,
resample_and_snap, wav_bytes_base64
)
@dataclass
class JamParams:
bpm: float
beats_per_bar: int
bars_per_chunk: int
target_sr: int
loudness_mode: str = "auto"
headroom_db: float = 1.0
style_vec: np.ndarray | None = None
ref_loop: any = None
combined_loop: any = None
guidance_weight: float = 1.1
temperature: float = 1.1
topk: int = 40
@dataclass
class JamChunk:
index: int
audio_base64: str
metadata: dict
class JamWorker(threading.Thread):
def __init__(self, mrt, params: JamParams):
super().__init__(daemon=True)
self.mrt = mrt
self.params = params
self.state = mrt.init_state()
if params.combined_loop is not None:
self._setup_context_from_combined_loop()
self.idx = 0
self.outbox: list[JamChunk] = []
self._stop_event = threading.Event()
# NEW: Track delivery state
self._last_delivered_index = 0
self._max_buffer_ahead = 5 # Don't generate more than 3 chunks ahead
# Timing info
self.last_chunk_started_at = None
self.last_chunk_completed_at = None
self._lock = threading.Lock()
def _setup_context_from_combined_loop(self):
"""Set up MRT context tokens from the combined loop audio"""
try:
from utils import make_bar_aligned_context, take_bar_aligned_tail
codec_fps = float(self.mrt.codec.frame_rate)
ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps
loop_for_context = take_bar_aligned_tail(
self.params.combined_loop,
self.params.bpm,
self.params.beats_per_bar,
ctx_seconds
)
tokens_full = self.mrt.codec.encode(loop_for_context).astype(np.int32)
tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth]
context_tokens = make_bar_aligned_context(
tokens,
bpm=self.params.bpm,
fps=int(self.mrt.codec.frame_rate),
ctx_frames=self.mrt.config.context_length_frames,
beats_per_bar=self.params.beats_per_bar
)
self.state.context_tokens = context_tokens
print(f"β
JamWorker: Set up fresh context from combined loop")
except Exception as e:
print(f"β Failed to setup context from combined loop: {e}")
def stop(self):
self._stop_event.set()
def update_knobs(self, *, guidance_weight=None, temperature=None, topk=None):
with self._lock:
if guidance_weight is not None: self.params.guidance_weight = float(guidance_weight)
if temperature is not None: self.params.temperature = float(temperature)
if topk is not None: self.params.topk = int(topk)
def get_next_chunk(self) -> JamChunk | None:
"""Get the next sequential chunk (blocks/waits if not ready)"""
target_index = self._last_delivered_index + 1
# Wait for the target chunk to be ready (with timeout)
max_wait = 30.0 # seconds
start_time = time.time()
while time.time() - start_time < max_wait and not self._stop_event.is_set():
with self._lock:
# Look for the exact chunk we need
for chunk in self.outbox:
if chunk.index == target_index:
self._last_delivered_index = target_index
print(f"π¦ Delivered chunk {target_index}")
return chunk
# Not ready yet, wait a bit
time.sleep(0.1)
# Timeout or stopped
return None
def mark_chunk_consumed(self, chunk_index: int):
"""Mark a chunk as consumed by the frontend"""
with self._lock:
self._last_delivered_index = max(self._last_delivered_index, chunk_index)
print(f"β
Chunk {chunk_index} consumed")
def _should_generate_next_chunk(self) -> bool:
"""Check if we should generate the next chunk (don't get too far ahead)"""
with self._lock:
# Don't generate if we're already too far ahead
if self.idx > self._last_delivered_index + self._max_buffer_ahead:
return False
return True
def _seconds_per_bar(self) -> float:
return self.params.beats_per_bar * (60.0 / self.params.bpm)
def _snap_and_encode(self, y, seconds, target_sr, bars):
cur_sr = int(self.mrt.sample_rate)
x = y.samples if y.samples.ndim == 2 else y.samples[:, None]
x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=seconds)
b64, total_samples, channels = wav_bytes_base64(x, target_sr)
meta = {
"bpm": int(round(self.params.bpm)),
"bars": int(bars),
"beats_per_bar": int(self.params.beats_per_bar),
"sample_rate": int(target_sr),
"channels": channels,
"total_samples": total_samples,
"seconds_per_bar": self._seconds_per_bar(),
"loop_duration_seconds": bars * self._seconds_per_bar(),
"guidance_weight": self.params.guidance_weight,
"temperature": self.params.temperature,
"topk": self.params.topk,
}
return b64, meta
def _append_model_chunk_to_stream(self, wav):
"""Incrementally append a model chunk with equal-power crossfade."""
xfade_s = float(self.mrt.config.crossfade_length)
sr = int(self.mrt.sample_rate)
xfade_n = int(round(xfade_s * sr))
s = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]
if getattr(self, "_stream", None) is None:
# First chunk: drop model pre-roll (xfade head)
if s.shape[0] > xfade_n:
self._stream = s[xfade_n:].astype(np.float32, copy=True)
else:
self._stream = np.zeros((0, s.shape[1]), dtype=np.float32)
self._next_emit_start = 0 # pointer into _stream (model SR samples)
return
# Crossfade last xfade_n samples of _stream with head of new s
if s.shape[0] <= xfade_n or self._stream.shape[0] < xfade_n:
# Degenerate safeguard
self._stream = np.concatenate([self._stream, s], axis=0)
return
tail = self._stream[-xfade_n:]
head = s[:xfade_n]
# Equal-power envelopes
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)[:, None]
eq_in, eq_out = np.sin(t), np.cos(t)
mixed = tail * eq_out + head * eq_in
self._stream = np.concatenate([self._stream[:-xfade_n], mixed, s[xfade_n:]], axis=0)
def run(self):
"""Continuous stream + sliding 8-bar window emitter."""
sr_model = int(self.mrt.sample_rate)
spb = self._seconds_per_bar()
chunk_secs = float(self.params.bars_per_chunk) * spb
chunk_n_model = int(round(chunk_secs * sr_model))
xfade = self.mrt.config.crossfade_length
# Streaming state
self._stream = None # np.ndarray [S, C] at model SR
self._next_emit_start = 0 # sample pointer for next 8-bar cut
print("π JamWorker (streaming) started...")
while not self._stop_event.is_set():
# Flow control: don't get too far ahead of the consumer
with self._lock:
if self.idx > self._last_delivered_index + self._max_buffer_ahead:
time.sleep(0.25)
continue
style_vec = self.params.style_vec
self.mrt.guidance_weight = self.params.guidance_weight
self.mrt.temperature = self.params.temperature
self.mrt.topk = self.params.topk
# Generate ONE model chunk and append to the continuous stream
self.last_chunk_started_at = time.time()
wav, self.state = self.mrt.generate_chunk(state=self.state, style=style_vec)
self._append_model_chunk_to_stream(wav)
self.last_chunk_completed_at = time.time()
# While we have at least one full 8-bar window available, emit it
while (getattr(self, "_stream", None) is not None and
self._stream.shape[0] - self._next_emit_start >= chunk_n_model and
not self._stop_event.is_set()):
seg = self._stream[self._next_emit_start:self._next_emit_start + chunk_n_model]
# Wrap as Waveform at model SR
y = au.Waveform(seg.astype(np.float32, copy=False), sr_model).as_stereo()
# Post-processing:
# - First emitted chunk: loudness-match to ref_loop
# - No micro-fades on mid-stream windows (they cause dips)
next_idx = self.idx + 1
if next_idx == 1 and self.params.ref_loop is not None:
y, _ = match_loudness_to_reference(
self.params.ref_loop, y,
method=self.params.loudness_mode,
headroom_db=self.params.headroom_db
)
# Resample + snap + encode exactly chunk_secs long
b64, meta = self._snap_and_encode(
y, seconds=chunk_secs,
target_sr=self.params.target_sr,
bars=self.params.bars_per_chunk
)
with self._lock:
self.idx = next_idx
self.outbox.append(JamChunk(index=next_idx, audio_base64=b64, metadata=meta))
# Bound the outbox
if len(self.outbox) > 10:
self.outbox = [ch for ch in self.outbox if ch.index > self._last_delivered_index - 5]
# Advance window pointer to the next 8-bar slot
self._next_emit_start += chunk_n_model
# Trim old samples to keep memory bounded (keep a little guard)
keep_from = max(0, self._next_emit_start - chunk_n_model) # keep 1 extra window
if keep_from > 0:
self._stream = self._stream[keep_from:]
self._next_emit_start -= keep_from
print("π JamWorker (streaming) stopped") |