File size: 10,951 Bytes
d1afbc8
 
 
 
 
184daaa
d1afbc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184daaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1afbc8
184daaa
 
d1afbc8
184daaa
 
d1afbc8
 
184daaa
 
 
 
 
 
d1afbc8
184daaa
d1afbc8
184daaa
 
 
d1afbc8
 
184daaa
 
d1afbc8
184daaa
d1afbc8
184daaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1afbc8
 
184daaa
 
 
 
 
 
d1afbc8
184daaa
 
d1afbc8
184daaa
 
 
 
 
d1afbc8
184daaa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# jam_worker.py - SIMPLE FIX VERSION
import threading, time, base64, io, uuid
from dataclasses import dataclass, field
import numpy as np
import soundfile as sf
from magenta_rt import audio as au

from utils import (
    match_loudness_to_reference, stitch_generated, hard_trim_seconds,
    apply_micro_fades, make_bar_aligned_context, take_bar_aligned_tail,
    resample_and_snap, wav_bytes_base64
)

@dataclass
class JamParams:
    bpm: float
    beats_per_bar: int
    bars_per_chunk: int
    target_sr: int
    loudness_mode: str = "auto"
    headroom_db: float = 1.0
    style_vec: np.ndarray | None = None
    ref_loop: any = None
    combined_loop: any = None
    guidance_weight: float = 1.1
    temperature: float = 1.1
    topk: int = 40

@dataclass
class JamChunk:
    index: int
    audio_base64: str
    metadata: dict

class JamWorker(threading.Thread):
    def __init__(self, mrt, params: JamParams):
        super().__init__(daemon=True)
        self.mrt = mrt
        self.params = params
        self.state = mrt.init_state()
        
        if params.combined_loop is not None:
            self._setup_context_from_combined_loop()
            
        self.idx = 0
        self.outbox: list[JamChunk] = []
        self._stop_event = threading.Event()
        
        # NEW: Track delivery state
        self._last_delivered_index = 0
        self._max_buffer_ahead = 5  # Don't generate more than 3 chunks ahead
        
        # Timing info
        self.last_chunk_started_at = None
        self.last_chunk_completed_at = None
        self._lock = threading.Lock()

    def _setup_context_from_combined_loop(self):
        """Set up MRT context tokens from the combined loop audio"""
        try:
            from utils import make_bar_aligned_context, take_bar_aligned_tail
            
            codec_fps = float(self.mrt.codec.frame_rate)
            ctx_seconds = float(self.mrt.config.context_length_frames) / codec_fps
            
            loop_for_context = take_bar_aligned_tail(
                self.params.combined_loop, 
                self.params.bpm, 
                self.params.beats_per_bar, 
                ctx_seconds
            )
            
            tokens_full = self.mrt.codec.encode(loop_for_context).astype(np.int32)
            tokens = tokens_full[:, :self.mrt.config.decoder_codec_rvq_depth]
            
            context_tokens = make_bar_aligned_context(
                tokens, 
                bpm=self.params.bpm, 
                fps=int(self.mrt.codec.frame_rate),
                ctx_frames=self.mrt.config.context_length_frames, 
                beats_per_bar=self.params.beats_per_bar
            )
            
            self.state.context_tokens = context_tokens
            print(f"βœ… JamWorker: Set up fresh context from combined loop")
            
        except Exception as e:
            print(f"❌ Failed to setup context from combined loop: {e}")

    def stop(self):
        self._stop_event.set()

    def update_knobs(self, *, guidance_weight=None, temperature=None, topk=None):
        with self._lock:
            if guidance_weight is not None: self.params.guidance_weight = float(guidance_weight)
            if temperature is not None:     self.params.temperature     = float(temperature)
            if topk is not None:            self.params.topk            = int(topk)

    def get_next_chunk(self) -> JamChunk | None:
        """Get the next sequential chunk (blocks/waits if not ready)"""
        target_index = self._last_delivered_index + 1
        
        # Wait for the target chunk to be ready (with timeout)
        max_wait = 30.0  # seconds
        start_time = time.time()
        
        while time.time() - start_time < max_wait and not self._stop_event.is_set():
            with self._lock:
                # Look for the exact chunk we need
                for chunk in self.outbox:
                    if chunk.index == target_index:
                        self._last_delivered_index = target_index
                        print(f"πŸ“¦ Delivered chunk {target_index}")
                        return chunk
            
            # Not ready yet, wait a bit
            time.sleep(0.1)
        
        # Timeout or stopped
        return None

    def mark_chunk_consumed(self, chunk_index: int):
        """Mark a chunk as consumed by the frontend"""
        with self._lock:
            self._last_delivered_index = max(self._last_delivered_index, chunk_index)
            print(f"βœ… Chunk {chunk_index} consumed")

    def _should_generate_next_chunk(self) -> bool:
        """Check if we should generate the next chunk (don't get too far ahead)"""
        with self._lock:
            # Don't generate if we're already too far ahead
            if self.idx > self._last_delivered_index + self._max_buffer_ahead:
                return False
            return True

    def _seconds_per_bar(self) -> float:
        return self.params.beats_per_bar * (60.0 / self.params.bpm)

    def _snap_and_encode(self, y, seconds, target_sr, bars):
        cur_sr = int(self.mrt.sample_rate)
        x = y.samples if y.samples.ndim == 2 else y.samples[:, None]
        x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=seconds)
        b64, total_samples, channels = wav_bytes_base64(x, target_sr)
        meta = {
            "bpm": int(round(self.params.bpm)),
            "bars": int(bars),
            "beats_per_bar": int(self.params.beats_per_bar),
            "sample_rate": int(target_sr),
            "channels": channels,
            "total_samples": total_samples,
            "seconds_per_bar": self._seconds_per_bar(),
            "loop_duration_seconds": bars * self._seconds_per_bar(),
            "guidance_weight": self.params.guidance_weight,
            "temperature": self.params.temperature,
            "topk": self.params.topk,
        }
        return b64, meta

    def _append_model_chunk_to_stream(self, wav):
        """Incrementally append a model chunk with equal-power crossfade."""
        xfade_s = float(self.mrt.config.crossfade_length)
        sr = int(self.mrt.sample_rate)
        xfade_n = int(round(xfade_s * sr))

        s = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]

        if getattr(self, "_stream", None) is None:
            # First chunk: drop model pre-roll (xfade head)
            if s.shape[0] > xfade_n:
                self._stream = s[xfade_n:].astype(np.float32, copy=True)
            else:
                self._stream = np.zeros((0, s.shape[1]), dtype=np.float32)
            self._next_emit_start = 0  # pointer into _stream (model SR samples)
            return

        # Crossfade last xfade_n samples of _stream with head of new s
        if s.shape[0] <= xfade_n or self._stream.shape[0] < xfade_n:
            # Degenerate safeguard
            self._stream = np.concatenate([self._stream, s], axis=0)
            return

        tail = self._stream[-xfade_n:]
        head = s[:xfade_n]

        # Equal-power envelopes
        t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)[:, None]
        eq_in, eq_out = np.sin(t), np.cos(t)
        mixed = tail * eq_out + head * eq_in

        self._stream = np.concatenate([self._stream[:-xfade_n], mixed, s[xfade_n:]], axis=0)

    def run(self):
        """Continuous stream + sliding 8-bar window emitter."""
        sr_model = int(self.mrt.sample_rate)
        spb = self._seconds_per_bar()
        chunk_secs = float(self.params.bars_per_chunk) * spb
        chunk_n_model = int(round(chunk_secs * sr_model))
        xfade = self.mrt.config.crossfade_length

        # Streaming state
        self._stream = None               # np.ndarray [S, C] at model SR
        self._next_emit_start = 0         # sample pointer for next 8-bar cut

        print("πŸš€ JamWorker (streaming) started...")

        while not self._stop_event.is_set():
            # Flow control: don't get too far ahead of the consumer
            with self._lock:
                if self.idx > self._last_delivered_index + self._max_buffer_ahead:
                    time.sleep(0.25)
                    continue
                style_vec = self.params.style_vec
                self.mrt.guidance_weight = self.params.guidance_weight
                self.mrt.temperature     = self.params.temperature
                self.mrt.topk            = self.params.topk

            # Generate ONE model chunk and append to the continuous stream
            self.last_chunk_started_at = time.time()
            wav, self.state = self.mrt.generate_chunk(state=self.state, style=style_vec)
            self._append_model_chunk_to_stream(wav)
            self.last_chunk_completed_at = time.time()

            # While we have at least one full 8-bar window available, emit it
            while (getattr(self, "_stream", None) is not None and
                self._stream.shape[0] - self._next_emit_start >= chunk_n_model and
                not self._stop_event.is_set()):

                seg = self._stream[self._next_emit_start:self._next_emit_start + chunk_n_model]

                # Wrap as Waveform at model SR
                y = au.Waveform(seg.astype(np.float32, copy=False), sr_model).as_stereo()

                # Post-processing:
                # - First emitted chunk: loudness-match to ref_loop
                # - No micro-fades on mid-stream windows (they cause dips)
                next_idx = self.idx + 1
                if next_idx == 1 and self.params.ref_loop is not None:
                    y, _ = match_loudness_to_reference(
                        self.params.ref_loop, y,
                        method=self.params.loudness_mode,
                        headroom_db=self.params.headroom_db
                    )

                # Resample + snap + encode exactly chunk_secs long
                b64, meta = self._snap_and_encode(
                    y, seconds=chunk_secs,
                    target_sr=self.params.target_sr,
                    bars=self.params.bars_per_chunk
                )

                with self._lock:
                    self.idx = next_idx
                    self.outbox.append(JamChunk(index=next_idx, audio_base64=b64, metadata=meta))
                    # Bound the outbox
                    if len(self.outbox) > 10:
                        self.outbox = [ch for ch in self.outbox if ch.index > self._last_delivered_index - 5]

                # Advance window pointer to the next 8-bar slot
                self._next_emit_start += chunk_n_model

                # Trim old samples to keep memory bounded (keep a little guard)
                keep_from = max(0, self._next_emit_start - chunk_n_model)  # keep 1 extra window
                if keep_from > 0:
                    self._stream = self._stream[keep_from:]
                    self._next_emit_start -= keep_from

        print("πŸ›‘ JamWorker (streaming) stopped")