TestingAssist / api /routes /test_routes.py
thechaiexperiment's picture
Upload 17 files
d825c91 verified
raw
history blame
7.3 kB
from fastapi import APIRouter, HTTPException, Depends
from typing import List, Dict, Any, Optional
from loguru import logger
from pydantic import BaseModel
import json
from services.test_service import test_service
from services.ai_service import ai_service
router = APIRouter()
class TestCase(BaseModel):
id: str
title: str
preconditions: List[str]
steps: List[str]
expected_results: List[str]
priority: str
type: str
requirement_id: str
class ExportRequest(BaseModel):
test_cases: List[TestCase]
target: str
project_id: str
section_id: Optional[str] = None
@router.post("/generate")
async def generate_test_cases(
requirements: List[Dict[str, Any]],
ai_provider: str = "openai",
model: str = "gpt-3.5-turbo"
) -> List[Dict[str, Any]]:
"""
Generate test cases from requirements.
Parameters:
- requirements: List of requirements
- ai_provider: AI provider to use
- model: Model to use
"""
try:
test_cases = await test_service.generate_test_cases(
requirements=requirements,
ai_service=ai_service
)
return test_cases
except Exception as e:
logger.error(f"Error generating test cases: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/export")
async def export_test_cases(request: ExportRequest) -> Dict[str, Any]:
"""
Export test cases to test management tool.
Parameters:
- request: Export request containing test cases and target information
"""
try:
if request.target == "testrail":
if not request.section_id:
raise HTTPException(
status_code=400,
detail="section_id is required for TestRail export"
)
results = await test_service.export_to_testrail(
test_cases=request.test_cases,
project_id=int(request.project_id),
section_id=int(request.section_id)
)
elif request.target == "jira":
results = await test_service.export_to_jira(
test_cases=request.test_cases,
project_key=request.project_id
)
elif request.target == "qtest":
results = await test_service.export_to_qtest(
test_cases=request.test_cases,
project_id=int(request.project_id)
)
else:
raise HTTPException(
status_code=400,
detail=f"Unsupported export target: {request.target}"
)
return {
"status": "success",
"results": results
}
except Exception as e:
logger.error(f"Error exporting test cases: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/validate")
async def validate_test_cases(
test_cases: List[TestCase],
requirements: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""
Validate test cases against requirements.
Parameters:
- test_cases: List of test cases
- requirements: List of requirements
"""
try:
# Create requirement coverage matrix
coverage = {}
for req in requirements:
coverage[req["id"]] = {
"requirement": req,
"test_cases": [],
"covered": False
}
# Map test cases to requirements
for test_case in test_cases:
if test_case.requirement_id in coverage:
coverage[test_case.requirement_id]["test_cases"].append(test_case)
coverage[test_case.requirement_id]["covered"] = True
# Calculate coverage metrics
total_requirements = len(requirements)
covered_requirements = sum(1 for req in coverage.values() if req["covered"])
coverage_percentage = (covered_requirements / total_requirements) * 100
# Identify uncovered requirements
uncovered_requirements = [
req["requirement"]
for req in coverage.values()
if not req["covered"]
]
return {
"status": "success",
"coverage_percentage": coverage_percentage,
"total_requirements": total_requirements,
"covered_requirements": covered_requirements,
"uncovered_requirements": uncovered_requirements,
"coverage_matrix": coverage
}
except Exception as e:
logger.error(f"Error validating test cases: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@router.post("/prioritize")
async def prioritize_test_cases(
test_cases: List[TestCase],
requirements: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
Prioritize test cases based on requirements and risk.
Parameters:
- test_cases: List of test cases
- requirements: List of requirements
"""
try:
# Create risk assessment prompt
prompt = f"""
Analyze the following requirements and test cases to determine test case priority.
Consider:
1. Requirement priority
2. Business impact
3. Technical complexity
4. Historical defect patterns
Requirements:
{json.dumps(requirements, indent=2)}
Test Cases:
{json.dumps([tc.dict() for tc in test_cases], indent=2)}
For each test case, provide:
1. Priority score (1-5)
2. Risk level (High/Medium/Low)
3. Justification
"""
# Get AI assessment
assessment = await ai_service.generate_response(prompt=prompt)
# Parse and apply prioritization
prioritized_cases = []
for test_case in test_cases:
# Find assessment for this test case
case_assessment = _find_case_assessment(
assessment["response"],
test_case.id
)
prioritized_cases.append({
"test_case": test_case,
"priority_score": case_assessment["priority_score"],
"risk_level": case_assessment["risk_level"],
"justification": case_assessment["justification"]
})
# Sort by priority score
prioritized_cases.sort(
key=lambda x: x["priority_score"],
reverse=True
)
return prioritized_cases
except Exception as e:
logger.error(f"Error prioritizing test cases: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
def _find_case_assessment(assessment_text: str, case_id: str) -> Dict[str, Any]:
"""Extract assessment for a specific test case."""
# This is a simplified implementation
# In practice, you'd want more robust parsing
return {
"priority_score": 3,
"risk_level": "Medium",
"justification": "Default assessment"
}