File size: 5,187 Bytes
d825c91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from fastapi import APIRouter, UploadFile, File, HTTPException, Depends
from typing import List, Dict, Any
from loguru import logger

from services.document_service import document_service
from services.ai_service import ai_service
from services.test_service import test_service
from services.automation_service import automation_service

router = APIRouter()

@router.post("/upload")
async def upload_document(

    file: UploadFile = File(...),

    process_type: str = "requirements"

) -> Dict[str, Any]:
    """

    Upload and process a document.

    

    Parameters:

    - file: The document file to upload

    - process_type: Type of processing to perform (requirements, test_cases, etc.)

    """
    try:
        # Save uploaded file
        file_path = await document_service.save_upload_file(file)
        
        # Process document
        result = await document_service.process_document(file_path)
        
        # Segment document if needed
        segments = await document_service.segment_document(result["text"])
        
        return {
            "status": "success",
            "file_path": file_path,
            "segments": segments,
            "type": result["type"]
        }
    except Exception as e:
        logger.error(f"Error processing document: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/process-requirements")
async def process_requirements(

    file: UploadFile = File(...),

    ai_provider: str = "openai",

    model: str = "gpt-3.5-turbo"

) -> Dict[str, Any]:
    """

    Process requirements document and generate test cases.

    

    Parameters:

    - file: The requirements document

    - ai_provider: AI provider to use (openai, local, openrouter)

    - model: Model to use for processing

    """
    try:
        # Upload and process document
        file_path = await document_service.save_upload_file(file)
        result = await document_service.process_document(file_path)
        
        # Extract requirements using AI
        prompt = f"""

        Extract requirements from the following text. For each requirement, provide:

        1. ID

        2. Title

        3. Description

        4. Priority (High/Medium/Low)

        

        Text:

        {result["text"]}

        """
        
        ai_response = await ai_service.generate_response(
            prompt=prompt,
            provider=ai_provider,
            model=model
        )
        
        # Generate test cases
        requirements = _parse_requirements(ai_response["response"])
        test_cases = await test_service.generate_test_cases(
            requirements=requirements,
            ai_service=ai_service
        )
        
        return {
            "status": "success",
            "requirements": requirements,
            "test_cases": test_cases
        }
    except Exception as e:
        logger.error(f"Error processing requirements: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

@router.post("/generate-test-scripts")
async def generate_test_scripts(

    test_cases: List[Dict[str, Any]],

    framework: str = "pytest",

    language: str = "python",

    browser: str = "chrome"

) -> Dict[str, Any]:
    """

    Generate test scripts from test cases.

    

    Parameters:

    - test_cases: List of test cases

    - framework: Test framework to use (pytest, playwright)

    - language: Programming language (python)

    - browser: Browser to use (chrome, firefox, etc.)

    """
    try:
        # Generate test scripts
        scripts = await automation_service.generate_test_scripts(
            test_cases=test_cases,
            framework=framework,
            language=language,
            browser=browser
        )
        
        # Generate Gherkin feature file
        feature = await automation_service.generate_gherkin_feature(test_cases)
        
        return {
            "status": "success",
            "scripts": scripts,
            "feature": feature
        }
    except Exception as e:
        logger.error(f"Error generating test scripts: {str(e)}")
        raise HTTPException(status_code=500, detail=str(e))

def _parse_requirements(text: str) -> List[Dict[str, Any]]:
    """Parse AI response into structured requirements."""
    requirements = []
    current_req = {}
    
    for line in text.split('\n'):
        line = line.strip()
        if not line:
            continue
            
        if line.startswith('ID:'):
            if current_req:
                requirements.append(current_req)
            current_req = {'id': line.split(':', 1)[1].strip()}
        elif line.startswith('Title:'):
            current_req['title'] = line.split(':', 1)[1].strip()
        elif line.startswith('Description:'):
            current_req['description'] = line.split(':', 1)[1].strip()
        elif line.startswith('Priority:'):
            current_req['priority'] = line.split(':', 1)[1].strip()
    
    if current_req:
        requirements.append(current_req)
    
    return requirements