Spaces:
Running
Running
import transformers | |
import pickle | |
import os | |
import re | |
import numpy as np | |
import torchvision | |
import nltk | |
import torch | |
import pandas as pd | |
import requests | |
import zipfile | |
import tempfile | |
from openai import OpenAI | |
from PyPDF2 import PdfReader | |
from fastapi import FastAPI, HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForSeq2SeqLM, | |
AutoModelForTokenClassification, | |
AutoModelForCausalLM, | |
pipeline, | |
Qwen2Tokenizer, | |
BartForConditionalGeneration | |
) | |
from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
from sklearn.metrics.pairwise import cosine_similarity | |
from bs4 import BeautifulSoup | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from typing import List, Dict, Optional | |
from safetensors.numpy import load_file | |
from safetensors.torch import safe_open | |
nltk.download('punkt_tab') | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
models = {} | |
data = {} | |
class QueryRequest(BaseModel): | |
query: str | |
language_code: int = 1 | |
class ChatQuery(BaseModel): | |
query: str | |
language_code: int = 1 | |
#conversation_id: str | |
class ChatMessage(BaseModel): | |
role: str | |
content: str | |
timestamp: str | |
def init_nltk(): | |
try: | |
nltk.download('punkt', quiet=True) | |
return True | |
except Exception as e: | |
print(f"Error initializing NLTK: {e}") | |
return False | |
def get_completion(prompt: str, model: str = "deepseek/deepseek-prover-v2:free") -> str: | |
api_key = os.environ.get('OPENROUTER_API_KEY') | |
if not api_key: | |
raise HTTPException(status_code=500, detail="OPENROUTER_API_KEY not found in environment variables") | |
client = OpenAI( | |
base_url="https://openrouter.ai/api/v1", | |
api_key=api_key | |
) | |
if not prompt.strip(): | |
raise HTTPException(status_code=400, detail="Please enter a question") | |
try: | |
completion = client.chat.completions.create( | |
extra_headers={ | |
"HTTP-Referer": "https://huggingface.co/spaces/thechaiexperiment/phitrial", | |
"X-Title": "My Hugging Face Space" | |
}, | |
model=model, | |
messages=[ | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
] | |
) | |
if (completion and | |
hasattr(completion, 'choices') and | |
completion.choices and | |
hasattr(completion.choices[0], 'message') and | |
hasattr(completion.choices[0].message, 'content')): | |
return completion.choices[0].message.content | |
else: | |
raise HTTPException(status_code=500, detail="Received invalid response from API") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
def load_models(): | |
try: | |
print("Loading models...") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Device set to use {device}") | |
models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512) | |
models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2') | |
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base") | |
models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base") | |
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER") | |
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER") | |
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer']) | |
model_name = "M4-ai/Orca-2.0-Tau-1.8B" | |
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name) | |
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name) | |
models['gen_tokenizer'] = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct") | |
models['gen_model'] = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct") | |
print("Models loaded successfully") | |
return True | |
except Exception as e: | |
print(f"Error loading models: {e}") | |
return False | |
def load_embeddings() -> Optional[Dict[str, np.ndarray]]: | |
try: | |
embeddings_path = 'embeddings.safetensors' | |
if not os.path.exists(embeddings_path): | |
print("File not found locally. Attempting to download from Hugging Face Hub...") | |
embeddings_path = hf_hub_download( | |
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'), | |
filename="embeddings.safetensors", | |
repo_type="space" | |
) | |
embeddings = {} | |
with safe_open(embeddings_path, framework="pt") as f: | |
keys = f.keys() | |
for key in keys: | |
try: | |
tensor = f.get_tensor(key) | |
if not isinstance(tensor, torch.Tensor): | |
raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.") | |
embeddings[key] = tensor.numpy() | |
except Exception as key_error: | |
print(f"Failed to process key {key}: {key_error}") | |
if embeddings: | |
print("Embeddings successfully loaded.") | |
else: | |
print("No embeddings could be loaded. Please check the file format and content.") | |
return embeddings | |
except Exception as e: | |
print(f"Error loading embeddings: {e}") | |
return None | |
def normalize_key(key: str) -> str: | |
match = re.search(r'file_(\d+)', key) | |
if match: | |
return match.group(1) | |
return key | |
def load_recipes_embeddings() -> Optional[np.ndarray]: | |
try: | |
embeddings_path = 'recipes_embeddings.safetensors' | |
if not os.path.exists(embeddings_path): | |
print("File not found locally. Attempting to download from Hugging Face Hub...") | |
embeddings_path = hf_hub_download( | |
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'), | |
filename="embeddings.safetensors", | |
repo_type="space" | |
) | |
embeddings = load_file(embeddings_path) | |
if "embeddings" not in embeddings: | |
raise ValueError("Key 'embeddings' not found in the safetensors file.") | |
tensor = embeddings["embeddings"] | |
print(f"Successfully loaded embeddings.") | |
print(f"Shape of embeddings: {tensor.shape}") | |
print(f"Dtype of embeddings: {tensor.dtype}") | |
print(f"First few values of the first embedding: {tensor[0][:5]}") | |
return tensor | |
except Exception as e: | |
print(f"Error loading embeddings: {e}") | |
return None | |
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'): | |
try: | |
print("Loading documents data...") | |
if not os.path.exists(folder_path) or not os.path.isdir(folder_path): | |
print(f"Error: Folder '{folder_path}' not found") | |
return False | |
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')] | |
if not html_files: | |
print(f"No HTML files found in folder '{folder_path}'") | |
return False | |
documents = [] | |
for file_name in html_files: | |
file_path = os.path.join(folder_path, file_name) | |
try: | |
with open(file_path, 'r', encoding='utf-8') as file: | |
soup = BeautifulSoup(file, 'html.parser') | |
text = soup.get_text(separator='\n').strip() | |
documents.append({"file_name": file_name, "content": text}) | |
except Exception as e: | |
print(f"Error reading file {file_name}: {e}") | |
data['df'] = pd.DataFrame(documents) | |
if data['df'].empty: | |
print("No valid documents loaded.") | |
return False | |
print(f"Successfully loaded {len(data['df'])} document records.") | |
return True | |
except Exception as e: | |
print(f"Error loading docs: {e}") | |
return None | |
def load_data(): | |
embeddings_success = load_embeddings() | |
documents_success = load_documents_data() | |
if not embeddings_success: | |
print("Warning: Failed to load embeddings, falling back to basic functionality") | |
if not documents_success: | |
print("Warning: Failed to load documents data, falling back to basic functionality") | |
return True | |
print("Initializing application...") | |
init_success = load_models() and load_data() | |
def translate_text(text, source_to_target='ar_to_en'): | |
try: | |
if source_to_target == 'ar_to_en': | |
tokenizer = models['ar_to_en_tokenizer'] | |
model = models['ar_to_en_model'] | |
else: | |
tokenizer = models['en_to_ar_tokenizer'] | |
model = models['en_to_ar_model'] | |
inputs = tokenizer(text, return_tensors="pt", truncation=True) | |
outputs = model.generate(**inputs) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
except Exception as e: | |
print(f"Translation error: {e}") | |
return text | |
def embed_query_text(query_text): | |
embedding = models['embedding_model'] | |
query_embedding = embedding.encode([query_text]) | |
return query_embedding | |
def query_embeddings(query_embedding, embeddings_data, n_results): | |
embeddings_data = load_embeddings() | |
if not embeddings_data: | |
print("No embeddings data available.") | |
return [] | |
try: | |
doc_ids = list(embeddings_data.keys()) | |
doc_embeddings = np.array(list(embeddings_data.values())) | |
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten() | |
top_indices = similarities.argsort()[-n_results:][::-1] | |
return [(doc_ids[i], similarities[i]) for i in top_indices] | |
except Exception as e: | |
print(f"Error in query_embeddings: {e}") | |
return [] | |
def query_recipes_embeddings(query_embedding, embeddings_data, n_results): | |
embeddings_data = load_recipes_embeddings() | |
if embeddings_data is None: | |
print("No embeddings data available.") | |
return [] | |
try: | |
if query_embedding.ndim == 1: | |
query_embedding = query_embedding.reshape(1, -1) | |
similarities = cosine_similarity(query_embedding, embeddings_data).flatten() | |
top_indices = similarities.argsort()[-n_results:][::-1] | |
return [(index, similarities[index]) for index in top_indices] | |
except Exception as e: | |
print(f"Error in query_recipes_embeddings: {e}") | |
return [] | |
def get_page_title(url): | |
try: | |
response = requests.get(url) | |
if response.status_code == 200: | |
soup = BeautifulSoup(response.text, 'html.parser') | |
title = soup.find('title') | |
return title.get_text() if title else "No title found" | |
else: | |
return None | |
except requests.exceptions.RequestException: | |
return None | |
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'): | |
texts = [] | |
for doc_id in doc_ids: | |
file_path = os.path.join(folder_path, doc_id) | |
try: | |
if not os.path.exists(file_path): | |
print(f"Warning: Document file not found: {file_path}") | |
texts.append("") | |
continue | |
with open(file_path, 'r', encoding='utf-8') as file: | |
soup = BeautifulSoup(file, 'html.parser') | |
text = soup.get_text(separator=' ', strip=True) | |
texts.append(text) | |
except Exception as e: | |
print(f"Error retrieving document {doc_id}: {e}") | |
texts.append("") | |
return texts | |
def retrieve_rec_texts( | |
document_indices, | |
folder_path='downloaded_articles/downloaded_articles', | |
metadata_path='recipes_metadata.xlsx' | |
): | |
try: | |
metadata_df = pd.read_excel(metadata_path) | |
if "id" not in metadata_df.columns or "original_file_name" not in metadata_df.columns: | |
raise ValueError("Metadata file must contain 'id' and 'original_file_name' columns.") | |
metadata_df = metadata_df.sort_values(by="id").reset_index(drop=True) | |
if metadata_df.index.max() < max(document_indices): | |
raise ValueError("Some document indices exceed the range of metadata.") | |
document_texts = [] | |
for idx in document_indices: | |
if idx >= len(metadata_df): | |
print(f"Warning: Index {idx} is out of range for metadata.") | |
continue | |
original_file_name = metadata_df.iloc[idx]["original_file_name"] | |
if not original_file_name: | |
print(f"Warning: No file name found for index {idx}") | |
continue | |
file_path = os.path.join(folder_path, original_file_name) | |
if os.path.exists(file_path): | |
with open(file_path, "r", encoding="utf-8") as f: | |
document_texts.append(f.read()) | |
else: | |
print(f"Warning: File not found at {file_path}") | |
return document_texts | |
except Exception as e: | |
print(f"Error in retrieve_rec_texts: {e}") | |
return [] | |
def retrieve_metadata(document_indices: List[int], metadata_path: str = 'recipes_metadata.xlsx') -> Dict[int, Dict[str, str]]: | |
try: | |
metadata_df = pd.read_excel(metadata_path) | |
required_columns = {'id', 'original_file_name', 'url'} | |
if not required_columns.issubset(metadata_df.columns): | |
raise ValueError(f"Metadata file must contain columns: {required_columns}") | |
metadata_df['id'] = metadata_df['id'].astype(int) | |
filtered_metadata = metadata_df[metadata_df['id'].isin(document_indices)] | |
metadata_dict = { | |
int(row['id']): { | |
"original_file_name": row['original_file_name'], | |
"url": row['url'] | |
} | |
for _, row in filtered_metadata.iterrows() | |
} | |
return metadata_dict | |
except Exception as e: | |
print(f"Error retrieving metadata: {e}") | |
return {} | |
def rerank_documents(query, document_ids, document_texts, cross_encoder_model): | |
try: | |
pairs = [(query, doc) for doc in document_texts] | |
scores = cross_encoder_model.predict(pairs) | |
scored_documents = list(zip(scores, document_ids, document_texts)) | |
scored_documents.sort(key=lambda x: x[0], reverse=True) | |
print("Reranked results:") | |
for idx, (score, doc_id, doc) in enumerate(scored_documents): | |
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id})") | |
return scored_documents | |
except Exception as e: | |
print(f"Error reranking documents: {e}") | |
return [] | |
def translate_ar_to_en(text): | |
try: | |
ar_to_en_tokenizer = models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
ar_to_en_model= models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
inputs = ar_to_en_tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
translated_ids = ar_to_en_model.generate( | |
inputs.input_ids, | |
max_length=512, | |
num_beams=4, | |
early_stopping=True | |
) | |
translated_text = ar_to_en_tokenizer.decode(translated_ids[0], skip_special_tokens=True) | |
return translated_text | |
except Exception as e: | |
print(f"Error during Arabic to English translation: {e}") | |
return None | |
def translate_en_to_ar(text): | |
try: | |
en_to_ar_tokenizer = models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
en_to_ar_model = models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
inputs = en_to_ar_tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
translated_ids = en_to_ar_model.generate( | |
inputs.input_ids, | |
max_length=512, | |
num_beams=4, | |
early_stopping=True | |
) | |
translated_text = en_to_ar_tokenizer.decode(translated_ids[0], skip_special_tokens=True) | |
return translated_text | |
except Exception as e: | |
print(f"Error during English to Arabic translation: {e}") | |
return None | |
async def root(): | |
return {"message": "Welcome to TeaRAG! Your Medical Assistant Powered by RAG"} | |
async def health_check(): | |
"""Health check endpoint""" | |
status = { | |
'status': 'healthy', | |
'models_loaded': bool(models), | |
'embeddings_loaded': bool(data.get('embeddings')), | |
'documents_loaded': not data.get('df', pd.DataFrame()).empty | |
} | |
return status | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |