Spaces:
Runtime error
Runtime error
import contextlib | |
import io | |
import re | |
import unittest | |
import torch | |
from PIL import Image | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AnimateDiffPipeline, | |
AnimateDiffVideoToVideoPipeline, | |
AutoencoderKL, | |
DDIMScheduler, | |
MotionAdapter, | |
StableDiffusionImg2ImgPipeline, | |
StableDiffusionInpaintPipeline, | |
StableDiffusionPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.pipelines.pipeline_loading_utils import is_safetensors_compatible, variant_compatible_siblings | |
from diffusers.utils.testing_utils import torch_device | |
class IsSafetensorsCompatibleTests(unittest.TestCase): | |
def test_all_is_compatible(self): | |
filenames = [ | |
"safety_checker/pytorch_model.bin", | |
"safety_checker/model.safetensors", | |
"vae/diffusion_pytorch_model.bin", | |
"vae/diffusion_pytorch_model.safetensors", | |
"text_encoder/pytorch_model.bin", | |
"text_encoder/model.safetensors", | |
"unet/diffusion_pytorch_model.bin", | |
"unet/diffusion_pytorch_model.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_diffusers_model_is_compatible(self): | |
filenames = [ | |
"unet/diffusion_pytorch_model.bin", | |
"unet/diffusion_pytorch_model.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_diffusers_model_is_not_compatible(self): | |
filenames = [ | |
"safety_checker/pytorch_model.bin", | |
"safety_checker/model.safetensors", | |
"vae/diffusion_pytorch_model.bin", | |
"vae/diffusion_pytorch_model.safetensors", | |
"text_encoder/pytorch_model.bin", | |
"text_encoder/model.safetensors", | |
"unet/diffusion_pytorch_model.bin", | |
# Removed: 'unet/diffusion_pytorch_model.safetensors', | |
] | |
self.assertFalse(is_safetensors_compatible(filenames)) | |
def test_transformer_model_is_compatible(self): | |
filenames = [ | |
"text_encoder/pytorch_model.bin", | |
"text_encoder/model.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_transformer_model_is_not_compatible(self): | |
filenames = [ | |
"safety_checker/pytorch_model.bin", | |
"safety_checker/model.safetensors", | |
"vae/diffusion_pytorch_model.bin", | |
"vae/diffusion_pytorch_model.safetensors", | |
"text_encoder/pytorch_model.bin", | |
# Removed: 'text_encoder/model.safetensors', | |
"unet/diffusion_pytorch_model.bin", | |
"unet/diffusion_pytorch_model.safetensors", | |
] | |
self.assertFalse(is_safetensors_compatible(filenames)) | |
def test_all_is_compatible_variant(self): | |
filenames = [ | |
"safety_checker/pytorch_model.fp16.bin", | |
"safety_checker/model.fp16.safetensors", | |
"vae/diffusion_pytorch_model.fp16.bin", | |
"vae/diffusion_pytorch_model.fp16.safetensors", | |
"text_encoder/pytorch_model.fp16.bin", | |
"text_encoder/model.fp16.safetensors", | |
"unet/diffusion_pytorch_model.fp16.bin", | |
"unet/diffusion_pytorch_model.fp16.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_diffusers_model_is_compatible_variant(self): | |
filenames = [ | |
"unet/diffusion_pytorch_model.fp16.bin", | |
"unet/diffusion_pytorch_model.fp16.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_diffusers_model_is_compatible_variant_mixed(self): | |
filenames = [ | |
"unet/diffusion_pytorch_model.bin", | |
"unet/diffusion_pytorch_model.fp16.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_diffusers_model_is_not_compatible_variant(self): | |
filenames = [ | |
"safety_checker/pytorch_model.fp16.bin", | |
"safety_checker/model.fp16.safetensors", | |
"vae/diffusion_pytorch_model.fp16.bin", | |
"vae/diffusion_pytorch_model.fp16.safetensors", | |
"text_encoder/pytorch_model.fp16.bin", | |
"text_encoder/model.fp16.safetensors", | |
"unet/diffusion_pytorch_model.fp16.bin", | |
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', | |
] | |
self.assertFalse(is_safetensors_compatible(filenames)) | |
def test_transformer_model_is_compatible_variant(self): | |
filenames = [ | |
"text_encoder/pytorch_model.fp16.bin", | |
"text_encoder/model.fp16.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_transformer_model_is_not_compatible_variant(self): | |
filenames = [ | |
"safety_checker/pytorch_model.fp16.bin", | |
"safety_checker/model.fp16.safetensors", | |
"vae/diffusion_pytorch_model.fp16.bin", | |
"vae/diffusion_pytorch_model.fp16.safetensors", | |
"text_encoder/pytorch_model.fp16.bin", | |
"unet/diffusion_pytorch_model.fp16.bin", | |
"unet/diffusion_pytorch_model.fp16.safetensors", | |
] | |
self.assertFalse(is_safetensors_compatible(filenames)) | |
def test_transformer_model_is_compatible_variant_extra_folder(self): | |
filenames = [ | |
"safety_checker/pytorch_model.fp16.bin", | |
"safety_checker/model.fp16.safetensors", | |
"vae/diffusion_pytorch_model.fp16.bin", | |
"vae/diffusion_pytorch_model.fp16.safetensors", | |
"text_encoder/pytorch_model.fp16.bin", | |
"unet/diffusion_pytorch_model.fp16.bin", | |
"unet/diffusion_pytorch_model.fp16.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames, folder_names={"vae", "unet"})) | |
def test_transformer_model_is_not_compatible_variant_extra_folder(self): | |
filenames = [ | |
"safety_checker/pytorch_model.fp16.bin", | |
"safety_checker/model.fp16.safetensors", | |
"vae/diffusion_pytorch_model.fp16.bin", | |
"vae/diffusion_pytorch_model.fp16.safetensors", | |
"text_encoder/pytorch_model.fp16.bin", | |
"unet/diffusion_pytorch_model.fp16.bin", | |
"unet/diffusion_pytorch_model.fp16.safetensors", | |
] | |
self.assertFalse(is_safetensors_compatible(filenames, folder_names={"text_encoder"})) | |
def test_transformers_is_compatible_sharded(self): | |
filenames = [ | |
"text_encoder/pytorch_model.bin", | |
"text_encoder/model-00001-of-00002.safetensors", | |
"text_encoder/model-00002-of-00002.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_transformers_is_compatible_variant_sharded(self): | |
filenames = [ | |
"text_encoder/pytorch_model.bin", | |
"text_encoder/model.fp16-00001-of-00002.safetensors", | |
"text_encoder/model.fp16-00001-of-00002.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_diffusers_is_compatible_sharded(self): | |
filenames = [ | |
"unet/diffusion_pytorch_model.bin", | |
"unet/diffusion_pytorch_model-00001-of-00002.safetensors", | |
"unet/diffusion_pytorch_model-00002-of-00002.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_diffusers_is_compatible_variant_sharded(self): | |
filenames = [ | |
"unet/diffusion_pytorch_model.bin", | |
"unet/diffusion_pytorch_model.fp16-00001-of-00002.safetensors", | |
"unet/diffusion_pytorch_model.fp16-00001-of-00002.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_diffusers_is_compatible_only_variants(self): | |
filenames = [ | |
"unet/diffusion_pytorch_model.fp16.safetensors", | |
] | |
self.assertTrue(is_safetensors_compatible(filenames)) | |
def test_diffusers_is_compatible_no_components(self): | |
filenames = [ | |
"diffusion_pytorch_model.bin", | |
] | |
self.assertFalse(is_safetensors_compatible(filenames)) | |
def test_diffusers_is_compatible_no_components_only_variants(self): | |
filenames = [ | |
"diffusion_pytorch_model.fp16.bin", | |
] | |
self.assertFalse(is_safetensors_compatible(filenames)) | |
class VariantCompatibleSiblingsTest(unittest.TestCase): | |
def test_only_non_variants_downloaded(self): | |
variant = "fp16" | |
filenames = [ | |
f"vae/diffusion_pytorch_model.{variant}.safetensors", | |
"vae/diffusion_pytorch_model.safetensors", | |
f"text_encoder/model.{variant}.safetensors", | |
"text_encoder/model.safetensors", | |
f"unet/diffusion_pytorch_model.{variant}.safetensors", | |
"unet/diffusion_pytorch_model.safetensors", | |
] | |
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=None) | |
assert all(variant not in f for f in model_filenames) | |
def test_only_variants_downloaded(self): | |
variant = "fp16" | |
filenames = [ | |
f"vae/diffusion_pytorch_model.{variant}.safetensors", | |
"vae/diffusion_pytorch_model.safetensors", | |
f"text_encoder/model.{variant}.safetensors", | |
"text_encoder/model.safetensors", | |
f"unet/diffusion_pytorch_model.{variant}.safetensors", | |
"unet/diffusion_pytorch_model.safetensors", | |
] | |
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant) | |
assert all(variant in f for f in model_filenames) | |
def test_mixed_variants_downloaded(self): | |
variant = "fp16" | |
non_variant_file = "text_encoder/model.safetensors" | |
filenames = [ | |
f"vae/diffusion_pytorch_model.{variant}.safetensors", | |
"vae/diffusion_pytorch_model.safetensors", | |
"text_encoder/model.safetensors", | |
f"unet/diffusion_pytorch_model.{variant}.safetensors", | |
"unet/diffusion_pytorch_model.safetensors", | |
] | |
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant) | |
assert all(variant in f if f != non_variant_file else variant not in f for f in model_filenames) | |
def test_non_variants_in_main_dir_downloaded(self): | |
variant = "fp16" | |
filenames = [ | |
f"diffusion_pytorch_model.{variant}.safetensors", | |
"diffusion_pytorch_model.safetensors", | |
"model.safetensors", | |
f"model.{variant}.safetensors", | |
f"diffusion_pytorch_model.{variant}.safetensors", | |
"diffusion_pytorch_model.safetensors", | |
] | |
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=None) | |
assert all(variant not in f for f in model_filenames) | |
def test_variants_in_main_dir_downloaded(self): | |
variant = "fp16" | |
filenames = [ | |
f"diffusion_pytorch_model.{variant}.safetensors", | |
"diffusion_pytorch_model.safetensors", | |
"model.safetensors", | |
f"model.{variant}.safetensors", | |
f"diffusion_pytorch_model.{variant}.safetensors", | |
"diffusion_pytorch_model.safetensors", | |
] | |
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant) | |
assert all(variant in f for f in model_filenames) | |
def test_mixed_variants_in_main_dir_downloaded(self): | |
variant = "fp16" | |
non_variant_file = "model.safetensors" | |
filenames = [ | |
f"diffusion_pytorch_model.{variant}.safetensors", | |
"diffusion_pytorch_model.safetensors", | |
"model.safetensors", | |
f"diffusion_pytorch_model.{variant}.safetensors", | |
"diffusion_pytorch_model.safetensors", | |
] | |
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant) | |
assert all(variant in f if f != non_variant_file else variant not in f for f in model_filenames) | |
def test_sharded_non_variants_downloaded(self): | |
variant = "fp16" | |
filenames = [ | |
f"unet/diffusion_pytorch_model.safetensors.index.{variant}.json", | |
"unet/diffusion_pytorch_model.safetensors.index.json", | |
"unet/diffusion_pytorch_model-00001-of-00003.safetensors", | |
"unet/diffusion_pytorch_model-00002-of-00003.safetensors", | |
"unet/diffusion_pytorch_model-00003-of-00003.safetensors", | |
f"unet/diffusion_pytorch_model.{variant}-00001-of-00002.safetensors", | |
f"unet/diffusion_pytorch_model.{variant}-00002-of-00002.safetensors", | |
] | |
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=None) | |
assert all(variant not in f for f in model_filenames) | |
def test_sharded_variants_downloaded(self): | |
variant = "fp16" | |
filenames = [ | |
f"unet/diffusion_pytorch_model.safetensors.index.{variant}.json", | |
"unet/diffusion_pytorch_model.safetensors.index.json", | |
"unet/diffusion_pytorch_model-00001-of-00003.safetensors", | |
"unet/diffusion_pytorch_model-00002-of-00003.safetensors", | |
"unet/diffusion_pytorch_model-00003-of-00003.safetensors", | |
f"unet/diffusion_pytorch_model.{variant}-00001-of-00002.safetensors", | |
f"unet/diffusion_pytorch_model.{variant}-00002-of-00002.safetensors", | |
] | |
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant) | |
assert all(variant in f for f in model_filenames) | |
def test_sharded_mixed_variants_downloaded(self): | |
variant = "fp16" | |
allowed_non_variant = "unet" | |
filenames = [ | |
f"vae/diffusion_pytorch_model.safetensors.index.{variant}.json", | |
"vae/diffusion_pytorch_model.safetensors.index.json", | |
"unet/diffusion_pytorch_model.safetensors.index.json", | |
"unet/diffusion_pytorch_model-00001-of-00003.safetensors", | |
"unet/diffusion_pytorch_model-00002-of-00003.safetensors", | |
"unet/diffusion_pytorch_model-00003-of-00003.safetensors", | |
f"vae/diffusion_pytorch_model.{variant}-00001-of-00002.safetensors", | |
f"vae/diffusion_pytorch_model.{variant}-00002-of-00002.safetensors", | |
"vae/diffusion_pytorch_model-00001-of-00003.safetensors", | |
"vae/diffusion_pytorch_model-00002-of-00003.safetensors", | |
"vae/diffusion_pytorch_model-00003-of-00003.safetensors", | |
] | |
model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant) | |
assert all(variant in f if allowed_non_variant not in f else variant not in f for f in model_filenames) | |
class ProgressBarTests(unittest.TestCase): | |
def get_dummy_components_image_generation(self): | |
cross_attention_dim = 8 | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(4, 8), | |
layers_per_block=1, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=2, | |
) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[4, 8], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
norm_num_groups=2, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=cross_attention_dim, | |
intermediate_size=16, | |
layer_norm_eps=1e-05, | |
num_attention_heads=2, | |
num_hidden_layers=2, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_components_video_generation(self): | |
cross_attention_dim = 8 | |
block_out_channels = (8, 8) | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=block_out_channels, | |
layers_per_block=2, | |
sample_size=8, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=2, | |
) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="linear", | |
clip_sample=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=block_out_channels, | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
norm_num_groups=2, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=cross_attention_dim, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
torch.manual_seed(0) | |
motion_adapter = MotionAdapter( | |
block_out_channels=block_out_channels, | |
motion_layers_per_block=2, | |
motion_norm_num_groups=2, | |
motion_num_attention_heads=4, | |
) | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"motion_adapter": motion_adapter, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def test_text_to_image(self): | |
components = self.get_dummy_components_image_generation() | |
pipe = StableDiffusionPipeline(**components) | |
pipe.to(torch_device) | |
inputs = {"prompt": "a cute cat", "num_inference_steps": 2} | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
stderr = stderr.getvalue() | |
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img, | |
# so we just match "5" in "#####| 1/5 [00:01<00:00]" | |
max_steps = re.search("/(.*?) ", stderr).group(1) | |
self.assertTrue(max_steps is not None and len(max_steps) > 0) | |
self.assertTrue( | |
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step" | |
) | |
pipe.set_progress_bar_config(disable=True) | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled") | |
def test_image_to_image(self): | |
components = self.get_dummy_components_image_generation() | |
pipe = StableDiffusionImg2ImgPipeline(**components) | |
pipe.to(torch_device) | |
image = Image.new("RGB", (32, 32)) | |
inputs = {"prompt": "a cute cat", "num_inference_steps": 2, "strength": 0.5, "image": image} | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
stderr = stderr.getvalue() | |
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img, | |
# so we just match "5" in "#####| 1/5 [00:01<00:00]" | |
max_steps = re.search("/(.*?) ", stderr).group(1) | |
self.assertTrue(max_steps is not None and len(max_steps) > 0) | |
self.assertTrue( | |
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step" | |
) | |
pipe.set_progress_bar_config(disable=True) | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled") | |
def test_inpainting(self): | |
components = self.get_dummy_components_image_generation() | |
pipe = StableDiffusionInpaintPipeline(**components) | |
pipe.to(torch_device) | |
image = Image.new("RGB", (32, 32)) | |
mask = Image.new("RGB", (32, 32)) | |
inputs = { | |
"prompt": "a cute cat", | |
"num_inference_steps": 2, | |
"strength": 0.5, | |
"image": image, | |
"mask_image": mask, | |
} | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
stderr = stderr.getvalue() | |
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img, | |
# so we just match "5" in "#####| 1/5 [00:01<00:00]" | |
max_steps = re.search("/(.*?) ", stderr).group(1) | |
self.assertTrue(max_steps is not None and len(max_steps) > 0) | |
self.assertTrue( | |
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step" | |
) | |
pipe.set_progress_bar_config(disable=True) | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled") | |
def test_text_to_video(self): | |
components = self.get_dummy_components_video_generation() | |
pipe = AnimateDiffPipeline(**components) | |
pipe.to(torch_device) | |
inputs = {"prompt": "a cute cat", "num_inference_steps": 2, "num_frames": 2} | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
stderr = stderr.getvalue() | |
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img, | |
# so we just match "5" in "#####| 1/5 [00:01<00:00]" | |
max_steps = re.search("/(.*?) ", stderr).group(1) | |
self.assertTrue(max_steps is not None and len(max_steps) > 0) | |
self.assertTrue( | |
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step" | |
) | |
pipe.set_progress_bar_config(disable=True) | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled") | |
def test_video_to_video(self): | |
components = self.get_dummy_components_video_generation() | |
pipe = AnimateDiffVideoToVideoPipeline(**components) | |
pipe.to(torch_device) | |
num_frames = 2 | |
video = [Image.new("RGB", (32, 32))] * num_frames | |
inputs = {"prompt": "a cute cat", "num_inference_steps": 2, "video": video} | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
stderr = stderr.getvalue() | |
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img, | |
# so we just match "5" in "#####| 1/5 [00:01<00:00]" | |
max_steps = re.search("/(.*?) ", stderr).group(1) | |
self.assertTrue(max_steps is not None and len(max_steps) > 0) | |
self.assertTrue( | |
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step" | |
) | |
pipe.set_progress_bar_config(disable=True) | |
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr): | |
_ = pipe(**inputs) | |
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled") | |