# app.py import gradio as gr import openai # openai.api_key = "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" client = openai.OpenAI() def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): #make history messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) print("Messages: ", messages) #input response = client.responses.create( model="gpt-4.1-nano", input=messages, temperature=temperature, top_p=top_p, max_output_tokens=max_tokens ) response = response.output_text yield response demo = gr.ChatInterface( respond, #câu phản hồi additional_inputs=[ gr.Textbox("Bạn là một chatbot tiếng Việt thân thiện.", label="System message"), gr.Slider(1, 2048, value=512, step=1, label="Max new tokens"), gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()