Spaces:
Sleeping
Sleeping
Commit
·
3afc718
1
Parent(s):
a793a92
test deepseek
Browse files
phoGPT.py
CHANGED
@@ -1,74 +1,74 @@
|
|
1 |
-
# app.py
|
2 |
-
import gradio as gr # type: ignore
|
3 |
-
import torch # type: ignore
|
4 |
-
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
-
# 1️⃣ Cấu hình và load model + tokenizer
|
7 |
-
model_path = "vinai/PhoGPT-4B-Chat"
|
8 |
|
9 |
-
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
10 |
-
config.init_device = "cpu"
|
11 |
|
12 |
-
model = AutoModelForCausalLM.from_pretrained("vinai/PhoGPT-4B-Chat", trust_remote_code=True)
|
13 |
-
model.eval()
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
15 |
|
16 |
|
17 |
-
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
# 3️⃣ Giao diện Gradio
|
63 |
-
demo = gr.ChatInterface(
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
)
|
72 |
|
73 |
-
if __name__ == "__main__":
|
74 |
-
|
|
|
1 |
+
# # app.py
|
2 |
+
# import gradio as gr # type: ignore
|
3 |
+
# import torch # type: ignore
|
4 |
+
# from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
+
# # 1️⃣ Cấu hình và load model + tokenizer
|
7 |
+
# model_path = "vinai/PhoGPT-4B-Chat"
|
8 |
|
9 |
+
# config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
10 |
+
# config.init_device = "cpu"
|
11 |
|
12 |
+
# model = AutoModelForCausalLM.from_pretrained("vinai/PhoGPT-4B-Chat", trust_remote_code=True)
|
13 |
+
# model.eval()
|
14 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
15 |
|
16 |
|
17 |
+
# def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
18 |
+
# # 2.1 — Gom system message và history vào messages list
|
19 |
+
# messages = [{"role": "system", "content": system_message}]
|
20 |
+
# for u, b in history:
|
21 |
+
# if u:
|
22 |
+
# messages.append({"role": "user", "content": u})
|
23 |
+
# if b:
|
24 |
+
# messages.append({"role": "assistant", "content": b})
|
25 |
+
# messages.append({"role": "user", "content": message})
|
26 |
|
27 |
+
# # 2.2 — Tạo prompt chuẩn
|
28 |
+
# input_prompt = tokenizer.apply_chat_template(
|
29 |
+
# messages,
|
30 |
+
# tokenize=False,
|
31 |
+
# add_generation_prompt=True
|
32 |
+
# )
|
33 |
|
34 |
+
# # 2.3 — Tokenize và đưa lên device
|
35 |
+
# # inputs = tokenizer(input_prompt, return_tensors="pt")
|
36 |
+
# input_ids = tokenizer(input_prompt, return_tensors="pt")
|
37 |
+
# # inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
38 |
|
39 |
+
# # 2.4 — Sinh text
|
40 |
+
# outputs = model.generate(
|
41 |
+
# inputs=input_ids["input_ids"],
|
42 |
+
# max_new_tokens=max_tokens,
|
43 |
+
# temperature=temperature,
|
44 |
+
# top_p=top_p,
|
45 |
+
# do_sample=True,
|
46 |
+
# eos_token_id=tokenizer.eos_token_id,
|
47 |
+
# pad_token_id=tokenizer.pad_token_id,
|
48 |
+
# )
|
49 |
+
# # print('!!!! OUTPUTS 1: ',outputs)
|
50 |
+
# # 2.5 — Decode và tách phần assistant trả lời
|
51 |
+
# response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
52 |
+
# print('!! OUTPUTS 2: ',response)
|
53 |
|
54 |
+
# response = response.split("### Trả lời:")[1]
|
55 |
+
# print('!!!! OUTPUTS 3: ',response)
|
56 |
+
# return response
|
57 |
|
58 |
+
# # 2.6 — Cập nhật history và trả về
|
59 |
+
# # history.append((message, response))
|
60 |
+
# # return history
|
61 |
|
62 |
+
# # 3️⃣ Giao diện Gradio
|
63 |
+
# demo = gr.ChatInterface(
|
64 |
+
# respond, #câu phản hồi
|
65 |
+
# additional_inputs=[
|
66 |
+
# gr.Textbox("Bạn là một chatbot ti��ng Việt thân thiện.", label="System message"),
|
67 |
+
# gr.Slider(1, 2048, value=512, step=1, label="Max new tokens"),
|
68 |
+
# gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
|
69 |
+
# gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
70 |
+
# ],
|
71 |
+
# )
|
72 |
|
73 |
+
# if __name__ == "__main__":
|
74 |
+
# demo.launch()
|
test.py
CHANGED
@@ -1,205 +1,205 @@
|
|
1 |
-
import gradio as gr # type: ignore
|
2 |
-
from huggingface_hub import InferenceClient # type: ignore
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
###########################
|
69 |
-
|
70 |
-
# app.py
|
71 |
-
import gradio as gr # type: ignore
|
72 |
-
import os
|
73 |
-
|
74 |
-
# import openai # type: ignore
|
75 |
-
# # openai.api_key = os.getenv("OPENAI_API_KEY")
|
76 |
-
# client = openai.OpenAI()
|
77 |
# def respond(
|
78 |
-
#
|
79 |
-
#
|
80 |
-
#
|
81 |
-
#
|
82 |
-
#
|
83 |
-
#
|
84 |
-
#
|
85 |
-
# file_uploaded
|
86 |
-
# ):
|
87 |
-
|
88 |
-
# #read system message
|
89 |
# messages = [{"role": "system", "content": system_message}]
|
90 |
-
|
91 |
-
# #read history
|
92 |
# for val in history:
|
93 |
# if val[0]:
|
94 |
# messages.append({"role": "user", "content": val[0]})
|
95 |
# if val[1]:
|
96 |
# messages.append({"role": "assistant", "content": val[1]})
|
97 |
-
|
98 |
-
# #read output
|
99 |
# messages.append({"role": "user", "content": message})
|
100 |
-
# print("## Messages: \n", messages) #debug output
|
101 |
|
102 |
-
#
|
103 |
-
|
104 |
-
#
|
105 |
-
#
|
|
|
|
|
106 |
# temperature=temperature,
|
107 |
# top_p=top_p,
|
108 |
-
#
|
109 |
-
#
|
110 |
-
|
111 |
-
#
|
112 |
-
#
|
113 |
-
|
114 |
-
|
115 |
-
#
|
116 |
-
|
117 |
-
#
|
118 |
-
#
|
119 |
-
#
|
120 |
-
#
|
121 |
-
#
|
122 |
-
#
|
123 |
-
#
|
124 |
-
#
|
125 |
-
#
|
126 |
-
#
|
127 |
-
#
|
128 |
-
#
|
129 |
-
#
|
130 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
|
133 |
-
# # messages = [
|
134 |
-
# # {"role": "user", "content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}."}
|
135 |
-
# # ]
|
136 |
-
# messages = [
|
137 |
-
# {"role": "user", "content": message}
|
138 |
-
# ]
|
139 |
-
|
140 |
-
# input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
141 |
-
# outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
|
142 |
-
# print(outputs)
|
143 |
-
# print("\n")
|
144 |
-
# result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
145 |
-
# print(result)
|
146 |
-
# return result
|
147 |
-
|
148 |
-
# import replicate
|
149 |
-
# def deepseek_api_replicate(
|
150 |
-
# user_message,
|
151 |
-
# history: list[tuple[str, str]],
|
152 |
-
# system_message,
|
153 |
-
# max_new_tokens,
|
154 |
-
# temperature,
|
155 |
-
# top_p):
|
156 |
-
# """
|
157 |
-
# Gọi DeepSeek Math trên Replicate và trả ngay kết quả.
|
158 |
-
|
159 |
-
# Trả về:
|
160 |
-
# str hoặc [bytes]: output model sinh ra
|
161 |
-
# """
|
162 |
-
# # 1. Khởi tạo client và xác thực
|
163 |
-
# # token = os.getenv("REPLICATE_API_TOKEN")
|
164 |
-
# # if not token:
|
165 |
-
# # raise RuntimeError("Missing REPLICATE_API_TOKEN") # bảo mật bằng biến môi trường
|
166 |
-
# client = replicate.Client(api_token="REPLICATE_API_TOKEN")
|
167 |
-
|
168 |
-
# # 2. Gọi model
|
169 |
-
# output = client.run(
|
170 |
-
# "deepseek-ai/deepseek-math-7b-base:61f572dae0985541cdaeb4a114fd5d2d16cb40dac3894da10558992fc60547c7",
|
171 |
-
# input={
|
172 |
-
# "system_prompt": system_message,
|
173 |
-
# "user_prompt": user_message,
|
174 |
-
# "max_new_tokens": max_new_tokens,
|
175 |
-
# "temperature": temperature,
|
176 |
-
# "top_p": top_p
|
177 |
-
# }
|
178 |
-
# )
|
179 |
-
|
180 |
-
# # 3. Trả kết quả
|
181 |
-
# return output
|
182 |
-
|
183 |
-
import call_api
|
184 |
-
|
185 |
-
|
186 |
-
chat = gr.ChatInterface(
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
)
|
203 |
-
|
204 |
-
if __name__ == "__main__":
|
205 |
-
|
|
|
1 |
+
# import gradio as gr # type: ignore
|
2 |
+
# from huggingface_hub import InferenceClient # type: ignore
|
3 |
+
|
4 |
+
# """
|
5 |
+
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
# """
|
7 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
|
9 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# def respond(
|
11 |
+
# message,
|
12 |
+
# history: list[tuple[str, str]],
|
13 |
+
# system_message,
|
14 |
+
# max_tokens,
|
15 |
+
# temperature,
|
16 |
+
# top_p,
|
17 |
+
# ):
|
|
|
|
|
|
|
|
|
18 |
# messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
|
|
20 |
# for val in history:
|
21 |
# if val[0]:
|
22 |
# messages.append({"role": "user", "content": val[0]})
|
23 |
# if val[1]:
|
24 |
# messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
|
|
26 |
# messages.append({"role": "user", "content": message})
|
|
|
27 |
|
28 |
+
# response = ""
|
29 |
+
|
30 |
+
# for message in client.chat_completion(
|
31 |
+
# messages,
|
32 |
+
# max_tokens=max_tokens,
|
33 |
+
# stream=True,
|
34 |
# temperature=temperature,
|
35 |
# top_p=top_p,
|
36 |
+
# ):
|
37 |
+
# token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
# response += token
|
40 |
+
# yield response
|
41 |
+
|
42 |
+
|
43 |
+
# """
|
44 |
+
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
# """
|
46 |
+
# demo = gr.ChatInterface(
|
47 |
+
# respond,
|
48 |
+
# additional_inputs=[
|
49 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
# gr.Slider(
|
53 |
+
# minimum=0.1,
|
54 |
+
# maximum=1.0,
|
55 |
+
# value=0.95,
|
56 |
+
# step=0.05,
|
57 |
+
# label="Top-p (nucleus sampling)",
|
58 |
+
# ),
|
59 |
+
# ],
|
60 |
+
# )
|
61 |
+
|
62 |
+
|
63 |
+
# if __name__ == "__main__":
|
64 |
+
# demo.launch()
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
# ###########################
|
69 |
+
|
70 |
+
# # app.py
|
71 |
+
# import gradio as gr # type: ignore
|
72 |
+
# import os
|
73 |
+
|
74 |
+
# # import openai # type: ignore
|
75 |
+
# # # openai.api_key = os.getenv("OPENAI_API_KEY")
|
76 |
+
# # client = openai.OpenAI()
|
77 |
+
# # def respond(
|
78 |
+
# # message,
|
79 |
+
# # history: list[tuple[str, str]],
|
80 |
+
# # system_message,
|
81 |
+
# # max_tokens,
|
82 |
+
# # temperature,
|
83 |
+
# # top_p,
|
84 |
+
# # image_uploaded,
|
85 |
+
# # file_uploaded
|
86 |
+
# # ):
|
87 |
+
|
88 |
+
# # #read system message
|
89 |
+
# # messages = [{"role": "system", "content": system_message}]
|
90 |
+
|
91 |
+
# # #read history
|
92 |
+
# # for val in history:
|
93 |
+
# # if val[0]:
|
94 |
+
# # messages.append({"role": "user", "content": val[0]})
|
95 |
+
# # if val[1]:
|
96 |
+
# # messages.append({"role": "assistant", "content": val[1]})
|
97 |
+
|
98 |
+
# # #read output
|
99 |
+
# # messages.append({"role": "user", "content": message})
|
100 |
+
# # print("## Messages: \n", messages) #debug output
|
101 |
+
|
102 |
+
# # #create output
|
103 |
+
# # response = client.responses.create(
|
104 |
+
# # model="gpt-4.1-nano",
|
105 |
+
# # input=messages,
|
106 |
+
# # temperature=temperature,
|
107 |
+
# # top_p=top_p,
|
108 |
+
# # max_output_tokens=max_tokens
|
109 |
+
# # )
|
110 |
+
|
111 |
+
# # #read output
|
112 |
+
# # response = response.output_text
|
113 |
+
# # print("## Response: ", response) #debug output
|
114 |
+
# # print("\n")
|
115 |
+
# # yield response #chat reply
|
116 |
+
|
117 |
+
# # import torch
|
118 |
+
# # from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
119 |
+
# # model_name = "deepseek-ai/deepseek-math-7b-base"
|
120 |
+
# # tokenizer = AutoTokenizer.from_pretrained(model_name)
|
121 |
+
# # model = AutoModelForCausalLM.from_pretrained(model_name)
|
122 |
+
# # # model.generation_config = GenerationConfig.from_pretrained(model_name)
|
123 |
+
# # # model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
124 |
+
# # def deepseek(
|
125 |
+
# # message,
|
126 |
+
# # history: list[tuple[str, str]],
|
127 |
+
# # system_message,
|
128 |
+
# # max_tokens,
|
129 |
+
# # temperature,
|
130 |
+
# # top_p):
|
131 |
|
132 |
|
133 |
+
# # # messages = [
|
134 |
+
# # # {"role": "user", "content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}."}
|
135 |
+
# # # ]
|
136 |
+
# # messages = [
|
137 |
+
# # {"role": "user", "content": message}
|
138 |
+
# # ]
|
139 |
+
|
140 |
+
# # input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
141 |
+
# # outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
|
142 |
+
# # print(outputs)
|
143 |
+
# # print("\n")
|
144 |
+
# # result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
145 |
+
# # print(result)
|
146 |
+
# # return result
|
147 |
+
|
148 |
+
# # import replicate
|
149 |
+
# # def deepseek_api_replicate(
|
150 |
+
# # user_message,
|
151 |
+
# # history: list[tuple[str, str]],
|
152 |
+
# # system_message,
|
153 |
+
# # max_new_tokens,
|
154 |
+
# # temperature,
|
155 |
+
# # top_p):
|
156 |
+
# # """
|
157 |
+
# # Gọi DeepSeek Math trên Replicate và trả ngay kết quả.
|
158 |
+
|
159 |
+
# # Trả về:
|
160 |
+
# # str hoặc [bytes]: output model sinh ra
|
161 |
+
# # """
|
162 |
+
# # # 1. Khởi tạo client và xác thực
|
163 |
+
# # # token = os.getenv("REPLICATE_API_TOKEN")
|
164 |
+
# # # if not token:
|
165 |
+
# # # raise RuntimeError("Missing REPLICATE_API_TOKEN") # bảo mật bằng biến môi trường
|
166 |
+
# # client = replicate.Client(api_token="REPLICATE_API_TOKEN")
|
167 |
+
|
168 |
+
# # # 2. Gọi model
|
169 |
+
# # output = client.run(
|
170 |
+
# # "deepseek-ai/deepseek-math-7b-base:61f572dae0985541cdaeb4a114fd5d2d16cb40dac3894da10558992fc60547c7",
|
171 |
+
# # input={
|
172 |
+
# # "system_prompt": system_message,
|
173 |
+
# # "user_prompt": user_message,
|
174 |
+
# # "max_new_tokens": max_new_tokens,
|
175 |
+
# # "temperature": temperature,
|
176 |
+
# # "top_p": top_p
|
177 |
+
# # }
|
178 |
+
# # )
|
179 |
+
|
180 |
+
# # # 3. Trả kết quả
|
181 |
+
# # return output
|
182 |
+
|
183 |
+
# import call_api
|
184 |
+
|
185 |
+
|
186 |
+
# chat = gr.ChatInterface(
|
187 |
+
# call_api.respond, #chat
|
188 |
+
# title="Trợ lý Học Tập AI",
|
189 |
+
# description="Nhập câu hỏi của bạn về Toán, Lý, Hóa, Văn… và nhận giải đáp chi tiết ngay lập tức!",
|
190 |
+
# additional_inputs=[
|
191 |
+
# gr.Textbox("Bạn là một chatbot tiếng Việt thân thiện.", label="System message"),
|
192 |
+
# gr.Slider(1, 2048, value=200, step=1, label="Max new tokens"),
|
193 |
+
# gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature"),
|
194 |
+
# gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
195 |
+
# # gr.Image(type="pil", label="Attach an image (optional)"),
|
196 |
+
# # gr.File(label="Upload a file (optional)"),
|
197 |
+
# ],
|
198 |
+
# examples=[
|
199 |
+
# # Mỗi item: [message, system_message, max_tokens, temperature, top_p]
|
200 |
+
# ["tích phân của x^2 từ 0 đến 2 là gì? vui lòng lập luận từng bước, và đặt kết quả cuối cùng trong \boxed{}", "bạn là nhà toán học", 100, 0.7, 0.95],
|
201 |
+
# ],
|
202 |
+
# )
|
203 |
+
|
204 |
+
# if __name__ == "__main__":
|
205 |
+
# chat.launch()
|