Spaces:
Runtime error
Runtime error
File size: 8,072 Bytes
d7db483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import math
import random
from PIL import Image
import blobfile as bf
from mpi4py import MPI
import numpy as np
from torch.utils.data import DataLoader, Dataset
import os
import torchvision.transforms as transforms
import torch as th
from .degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
from functools import partial
import cv2
from PIL import PngImagePlugin
LARGE_ENOUGH_NUMBER = 100
PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)
def load_data_sketch(
*,
data_dir,
batch_size,
image_size,
class_cond=False,
deterministic=False,
random_crop=False,
random_flip=True,
train=True,
low_res = 0,
uncond_p = 0,
mode = ''
):
"""
For a dataset, create a generator over (images, kwargs) pairs.
Each images is an NCHW float tensor, and the kwargs dict contains zero or
more keys, each of which map to a batched Tensor of their own.
The kwargs dict can be used for class labels, in which case the key is "y"
and the values are integer tensors of class labels.
:param data_dir: a dataset directory.
:param batch_size: the batch size of each returned pair.
:param image_size: the size to which images are resized.
:param class_cond: if True, include a "y" key in returned dicts for class
label. If classes are not available and this is true, an
exception will be raised.
:param deterministic: if True, yield results in a deterministic order.
:param random_crop: if True, randomly crop the images for augmentation.
:param random_flip: if True, randomly flip the images for augmentation.
"""
if not data_dir:
raise ValueError("unspecified data directory")
with open(data_dir) as f:
all_files = f.read().splitlines()
print(len(all_files))
classes = None
if class_cond:
# Assume classes are the first part of the filename,
# before an underscore.
class_names = [bf.basename(path).split("_")[0] for path in all_files]
sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))}
classes = [sorted_classes[x] for x in class_names]
dataset = ImageDataset(
image_size,
all_files,
classes=classes,
shard=MPI.COMM_WORLD.Get_rank(),
num_shards=MPI.COMM_WORLD.Get_size(),
random_crop=random_crop,
random_flip=train,
down_sample_img_size = low_res,
uncond_p = uncond_p,
mode = mode,
)
if deterministic:
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=False, num_workers=8, drop_last=True, pin_memory=False
)
else:
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=True, num_workers=8, drop_last=True, pin_memory=False
)
while True:
yield from loader
def _list_image_files_recursively(data_dir):
results = []
for entry in sorted(bf.listdir(data_dir)):
full_path = bf.join(data_dir, entry)
ext = entry.split(".")[-1]
if "." in entry and ext.lower() in ["jpg", "jpeg", "png", "gif"]:
results.append(full_path)
elif bf.isdir(full_path):
results.extend(_list_image_files_recursively(full_path))
return results
class ImageDataset(Dataset):
def __init__(
self,
resolution,
image_paths,
classes=None,
shard=0,
num_shards=1,
random_crop=False,
random_flip=True,
down_sample_img_size = 0,
uncond_p = 0,
mode = '',
):
super().__init__()
self.crop_size = 256
self.resize_size = 256
self.local_images = image_paths[shard:][::num_shards]
self.local_classes = None if classes is None else classes[shard:][::num_shards]
self.random_crop = random_crop
self.random_flip = random_flip
self.down_sample_img = partial(degradation_fn_bsr_light, sf=resolution//down_sample_img_size) if down_sample_img_size else None
self.uncond_p = uncond_p
self.mode = mode
self.resolution = resolution
def __len__(self):
return len(self.local_images)
def __getitem__(self, idx):
if self.mode == 'coco-edge':
path = self.local_images[idx].replace('COCO-STUFF', 'COCO-Sketch')[:-4] + '.png'
path2 = path.replace('_img', '_sketch')
elif self.mode == 'flickr-edge':
path = self.local_images[idx].replace('images', 'img256')[:-4] + '.png'
path2 = path.replace('img256', 'sketch256')
with bf.BlobFile(path, "rb") as f:
pil_image = Image.open(f)
pil_image.load()
pil_image = pil_image.convert("RGB")
with bf.BlobFile(path2, "rb") as f:
pil_image2 = Image.open(f)
pil_image2.load()
pil_image2 = pil_image2.convert("L")
params = get_params(pil_image2.size, self.resize_size, self.crop_size)
transform_label = get_transform(params, self.resize_size, self.crop_size, method=Image.NEAREST, crop =self.random_crop, flip=self.random_flip)
label_pil = transform_label(pil_image2)
im_dist = cv2.distanceTransform(255-np.array(label_pil), cv2.DIST_L1, 3)
im_dist = np.clip((im_dist) , 0, 255).astype(np.uint8)
im_dist = Image.fromarray(im_dist).convert("RGB")
label_tensor = get_tensor()(im_dist)[:1]
label_tensor_ori = get_tensor()(label_pil.convert('RGB'))
transform_image = get_transform( params, self.resize_size, self.crop_size, crop =self.random_crop, flip=self.random_flip)
image_pil = transform_image(pil_image)
if self.resolution < 256:
image_pil = image_pil.resize((self.resolution, self.resolution), Image.BICUBIC)
image_tensor = get_tensor()(image_pil)
if self.down_sample_img:
image_pil = np.array(image_pil).astype(np.uint8)
down_sampled_image = self.down_sample_img(image=image_pil)["image"]
down_sampled_image = get_tensor()(down_sampled_image)
data_dict = {"ref":label_tensor, "low_res":down_sampled_image, "ref_ori":label_tensor_ori, "path": path}
return image_tensor, data_dict
if random.random() < self.uncond_p:
label_tensor = th.ones_like(label_tensor)
data_dict = {"ref":label_tensor, "ref_ori":label_tensor_ori, "path": path}
return image_tensor, data_dict
def get_params( size, resize_size, crop_size):
w, h = size
new_h = h
new_w = w
ss, ls = min(w, h), max(w, h) # shortside and longside
width_is_shorter = w == ss
ls = int(resize_size * ls / ss)
ss = resize_size
new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss)
x = random.randint(0, np.maximum(0, new_w - crop_size))
y = random.randint(0, np.maximum(0, new_h - crop_size))
flip = random.random() > 0.5
return {'crop_pos': (x, y), 'flip': flip}
def get_transform(params, resize_size, crop_size, method=Image.BICUBIC, flip=True, crop = True):
transform_list = []
transform_list.append(transforms.Lambda(lambda img: __scale(img, crop_size, method)))
if flip:
transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip'])))
return transforms.Compose(transform_list)
def get_tensor(normalize=True, toTensor=True):
transform_list = []
if toTensor:
transform_list += [transforms.ToTensor()]
if normalize:
transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
return transforms.Compose(transform_list)
def normalize():
return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
def __scale(img, target_width, method=Image.BICUBIC):
return img.resize((target_width, target_width), method)
def __flip(img, flip):
if flip:
return img.transpose(Image.FLIP_LEFT_RIGHT)
return img |