Spaces:
Running
Running
File size: 11,830 Bytes
9b0a8c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
import json
import time
from huggingface_hub import HfApi, create_repo, CommitScheduler
import bcrypt
import shutil
import uuid
import gradio as gr
from PIL import Image
import numpy as np
def load_concepts(path="data/concepts.json"):
with open(path, encoding='utf-8') as f:
data = json.load(f)
sorted_data = dict()
for country in sorted(data):
sorted_data[country] = dict()
for lang in sorted(data[country]):
sorted_data[country][lang] = data[country][lang]
return sorted_data
def load_metadata(path="data/metadata.json"):
with open(path, "r", encoding="utf-8") as f:
data = json.load(f)
sorted_data = dict()
for country in sorted(data):
sorted_data[country] = dict()
for lang in sorted(data[country]):
sorted_data[country][lang] = data[country][lang]
return sorted_data
class CustomHFDatasetSaver:
def __init__(self, api_token, dataset_name, private=False):
self.api_token = api_token
self.dataset_name = dataset_name
self.private = private
self.api = HfApi()
def setup(self, data_outputs, local_ds_folder):
# create repo is not exist
self.dataset_name = create_repo(
repo_id=self.dataset_name,
token=self.api_token,
private=self.private,
repo_type="dataset",
exist_ok=True,
).repo_id
# Create the local data folder if not exist
self.local_ds_folder = local_ds_folder
os.makedirs(self.local_ds_folder, exist_ok=True)
self.data_outputs = data_outputs # list of components to read values from
# create scheduler to commit the data to the hub every x minutes
self.scheduler = CommitScheduler(
repo_id=self.dataset_name,
repo_type="dataset",
folder_path=self.local_ds_folder,
every=1,
token=self.api_token,
)
def validate_data(self, values_dic):
"""
Validates the data before saving to ensure no required fields are empty.
Returns (bool, str) tuple where first value indicates if validation passed
and second value contains error message if validation failed.
"""
# Remove 'image' from required fields since we handle it separately
required_fields = ['country', 'language', 'category', 'concept', 'caption']
# Check if image is provided (either uploaded or via URL)
image = values_dic.get('image')
image_url = values_dic.get('image_url')
# Check if image exists and is not None
has_image = image is not None and (isinstance(image, dict) or (hasattr(image, 'shape') and image.shape[0] > 0))
has_url = image_url is not None and image_url.strip() != ""
if not has_image and not has_url:
return False, "Either an image or image URL must be provided"
# Check required fields
for field in required_fields:
value = values_dic.get(field)
if value is None or (isinstance(value, str) and value.strip() == ""):
return False, f"Required field '{field}' cannot be empty"
# Check if image file exists if image path is provided
if has_image and isinstance(image, dict):
if not os.path.exists(image.get('path', '')):
return False, "Image file not found"
return True, ""
#TODO: add a function to check if the user is logged in
def is_logged_in(self):
pass
#TODO: check if the user is logged in (add a decorator to the save function)
def save(self, *values):
# 'values' are the outputs from your data collection components,
# you can map these to field names as needed
values_dic = dict(zip(self.data_outputs, values))
# print(f"Values received: {values_dic}")
# Validate data before proceeding
is_valid, error_msg = self.validate_data(values_dic)
if not is_valid:
raise gr.Error(error_msg)
# raise ValueError(error_msg)
values_dic['password'] = self.hash_password(values_dic['password'])
# # Process main category and concept
# main_category = values_dic.get('category', '')
# main_concept = values_dic.get('concept', '')
# # Process category-specific concept dropdowns
# additional_concepts_by_category = {}
# # Extract predefined categories and their corresponding dropdowns from values_dic
# predefined_categories = sorted(list(values_dic.get('concepts_dict', {})
# .get(values_dic.get('country', 'USA'), {})
# .get(values_dic.get('language', 'English'), {}).keys()))[:5]
# # Process each category dropdown
# for i, category in enumerate(predefined_categories):
# dropdown_key = f'category{i+1}_concepts'
# if dropdown_key in values_dic and values_dic[dropdown_key]:
# # Only add non-empty concept selections
# if values_dic[dropdown_key]:
# additional_concepts_by_category[category] = values_dic[dropdown_key]
### TODO: fix saving additional concepts if not displayed in English
# # Process category-specific concept dropdowns
# additional_concepts_by_category = {}
# # Extract the country and language
# country = values_dic.get('country', 'USA')
# language = values_dic.get('language', 'English')
# concepts_dict = values_dic.get('concepts_dict', {})
# lang2eng_mapping = values_dic.get('country_lang_map', {})
# # Get the English version of the language for dictionary lookup
# eng_lang = lang2eng_mapping.get(language, language)
# # Get the predefined categories in English
# predefined_categories = sorted(list(concepts_dict.get(country, {}).get(eng_lang, {}).keys()))[:5]
# # Process each category dropdown
# for i, category in enumerate(predefined_categories):
# dropdown_key = f'category_{i+1}_concepts'
# if dropdown_key in values_dic and values_dic[dropdown_key]:
# # Only add non-empty concept selections
# additional_concepts_by_category[category] = values_dic[dropdown_key]
current_timestamp = int(time.time() * 1000)
# Create a unique ID for the sample is not provided
if not values_dic.get("id"):
# Missing ID
country, language, category, concept = values_dic.get("country"), values_dic.get("language"), values_dic.get("category"), values_dic.get("concept")
values_dic["id"] = f'{country}_{language}_{category}_{concept}_{current_timestamp}'
#prepare the main directory of the sample
if values_dic.get("username"):
sample_dir = os.path.join("logged_in_users", values_dic["country"], values_dic["language"], values_dic["username"], str(current_timestamp))
else:
sample_dir = os.path.join("anonymous_users", values_dic["country"], values_dic["language"], str(uuid.uuid4()))
os.makedirs(os.path.join(self.local_ds_folder, sample_dir), exist_ok=True)
# Destination path
dest_image_path = os.path.join(sample_dir, "image.png")
# Source path (to be used for copying the file in the with lock block)
# This is the path of the image file that was uploaded by the user
# I want to save the values_dic['image'] in the dest_image_path
# Convert numpy array to PIL Image and save it
# ===
# uploaded_image_path = os.path.join(self.local_ds_folder, dest_image_path)
# img = Image.fromarray(values_dic['image'])
# img.save(uploaded_image_path)
full_dest_path = os.path.join(self.local_ds_folder, dest_image_path)
# Handle different image types
image_data = values_dic['image']
if isinstance(image_data, dict) and 'path' in image_data:
# New upload case - copy from the uploaded path
uploaded_image_path = image_data['path']
with self.scheduler.lock:
shutil.copy(uploaded_image_path, full_dest_path)
elif isinstance(image_data, np.ndarray): # not values_dic.get('excluded', False) and
# Exclude case with numpy array - save the array as an image
with self.scheduler.lock:
# Convert numpy array to PIL image and save
img = Image.fromarray(image_data)
img.save(full_dest_path)
elif isinstance(image_data, Image.Image):
# PIL image case
with self.scheduler.lock:
image_data.save(full_dest_path)
values_dic['image'] = dest_image_path
image_file_path_on_hub = f"https://huggingface.co/datasets/{self.dataset_name}/resolve/main/{dest_image_path}"
# print(f"Saving sample: {values}")
# Build the metadata dictionary.
data_dict = {
# in case using windows
"image": values_dic['image'].replace("\\", "/"),
"image_file": image_file_path_on_hub.replace("\\", "/"),
# "image": values_dic['image'],
# "image_file": image_file_path_on_hub,
"image_url": values_dic['image_url'] or "",
"caption": values_dic['caption'] or "",
"country": values_dic['country'] or "",
"language": values_dic['language'] or "",
"category": values_dic['category'] or "",
"concept": values_dic['concept'] or "",
"category_1_concepts": [""] if values_dic.get('category_1_concepts', [""])==[] else values_dic.get('category_1_concepts', [""]),
"category_2_concepts": [""] if values_dic.get('category_2_concepts', [""])==[] else values_dic.get('category_2_concepts', [""]),
"category_3_concepts": [""] if values_dic.get('category_3_concepts', [""])==[] else values_dic.get('category_3_concepts', [""]),
"category_4_concepts": [""] if values_dic.get('category_4_concepts', [""])==[] else values_dic.get('category_4_concepts', [""]),
"category_5_concepts": [""] if values_dic.get('category_5_concepts', [""])==[] else values_dic.get('category_5_concepts', [""]),
"timestamp": current_timestamp,
"username": values_dic['username'] or "",
"password": values_dic['password'] or "",
"id": values_dic['id'],
"excluded": False if values_dic.get('excluded') is None else bool(values_dic.get('excluded')),
# "is_blurred": str(values_dic.get('is_blurred'))
}
print(f"Data dictionary: {data_dict}")
# Define a unique filename for the JSON metadata file (stored in self.folder).
json_filename = f"sample_{current_timestamp}.json"
json_file_path = os.path.join(self.local_ds_folder, sample_dir, json_filename)
with self.scheduler.lock:
# Save the metadata to the sample file in the local dataset folder
with open(json_file_path, "w", encoding="utf-8") as f:
json.dump(data_dict, f, indent=2)
print("Data saved successfully")
def hash_password(self, raw_password):
"""
Hashes a raw password using bcrypt and returns the hashed password.
raw_password (str): The plain text password to be hashed.
str: The hashed password as a string.
"""
hashed_password = bcrypt.hashpw(raw_password.encode(), bcrypt.gensalt()).decode()
return hashed_password
|