Spaces:
Sleeping
Sleeping
Separate model names from display names
Browse files
app.py
CHANGED
|
@@ -7,19 +7,26 @@ import numpy as np
|
|
| 7 |
|
| 8 |
# Load models
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
with open(model_probs_path) as f:
|
| 12 |
model_probs = json.load(f)
|
| 13 |
|
| 14 |
-
nn_model_path = hf_hub_download(repo_id="tbitai/
|
| 15 |
nn_model = tf.keras.models.load_model(nn_model_path)
|
| 16 |
|
| 17 |
-
llm_model_path = hf_hub_download(repo_id="tbitai/
|
| 18 |
llm_model = tf.keras.models.load_model(llm_model_path)
|
| 19 |
# Sentence Transformers should be imported after Keras models, in order to prevent it from setting Keras to legacy.
|
| 20 |
from sentence_transformers import SentenceTransformer
|
| 21 |
st_model = SentenceTransformer("avsolatorio/GIST-large-Embedding-v0")
|
| 22 |
|
|
|
|
| 23 |
# Utils for Bayes
|
| 24 |
|
| 25 |
UNK = '[UNK]'
|
|
@@ -70,12 +77,6 @@ def predict_llm(text):
|
|
| 70 |
embedding = st_model.encode(text)
|
| 71 |
return float(llm_model(np.array([embedding]))[0][0].numpy())
|
| 72 |
|
| 73 |
-
MODELS = [
|
| 74 |
-
BAYES := "Bayes Enron1 spam",
|
| 75 |
-
NN := "NN Enron1 spam",
|
| 76 |
-
LLM := "GISTy Enron1 spam",
|
| 77 |
-
]
|
| 78 |
-
|
| 79 |
def predict(model, input_txt, unbiased, intr_threshold):
|
| 80 |
if model == BAYES:
|
| 81 |
return predict_bayes(input_txt, unbiased=unbiased, intr_threshold=intr_threshold)
|
|
|
|
| 7 |
|
| 8 |
# Load models
|
| 9 |
|
| 10 |
+
MODELS = [
|
| 11 |
+
(BAYES := "bayes-enron1-spam", "Bayes Enron1 spam"),
|
| 12 |
+
(NN := "nn-enron1-spam", "NN Enron1 spam"),
|
| 13 |
+
(LLM := "gisty-enron1-spam", "GISTy Enron1 spam"),
|
| 14 |
+
]
|
| 15 |
+
|
| 16 |
+
model_probs_path = hf_hub_download(repo_id=f"tbitai/{BAYES}", filename="probs.json")
|
| 17 |
with open(model_probs_path) as f:
|
| 18 |
model_probs = json.load(f)
|
| 19 |
|
| 20 |
+
nn_model_path = hf_hub_download(repo_id=f"tbitai/{NN}", filename="nn-enron1-spam.keras")
|
| 21 |
nn_model = tf.keras.models.load_model(nn_model_path)
|
| 22 |
|
| 23 |
+
llm_model_path = hf_hub_download(repo_id=f"tbitai/{LLM}", filename="gisty-enron1-spam.keras")
|
| 24 |
llm_model = tf.keras.models.load_model(llm_model_path)
|
| 25 |
# Sentence Transformers should be imported after Keras models, in order to prevent it from setting Keras to legacy.
|
| 26 |
from sentence_transformers import SentenceTransformer
|
| 27 |
st_model = SentenceTransformer("avsolatorio/GIST-large-Embedding-v0")
|
| 28 |
|
| 29 |
+
|
| 30 |
# Utils for Bayes
|
| 31 |
|
| 32 |
UNK = '[UNK]'
|
|
|
|
| 77 |
embedding = st_model.encode(text)
|
| 78 |
return float(llm_model(np.array([embedding]))[0][0].numpy())
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
def predict(model, input_txt, unbiased, intr_threshold):
|
| 81 |
if model == BAYES:
|
| 82 |
return predict_bayes(input_txt, unbiased=unbiased, intr_threshold=intr_threshold)
|