Spaces:
Sleeping
Sleeping
File size: 13,885 Bytes
10e9b7d eccf8e4 7d65c66 620f572 3c4371f c275bbd 3164d5a 7067f57 3164d5a e80aab9 3db6293 e80aab9 3164d5a 8b49454 3164d5a 31243f4 8b49454 c275bbd 8b49454 6e735ee 31243f4 8b49454 6e735ee 76bb81b 6e735ee 8b49454 3164d5a 6e735ee 8b49454 6e735ee 8b49454 6e735ee 8b49454 6e735ee 8b49454 6e735ee 8b49454 6e735ee 8b49454 d4b02ec 4021bf3 3164d5a 31243f4 3164d5a 31243f4 3164d5a 7e4a06b 31243f4 3164d5a 31243f4 eccf8e4 31243f4 7d65c66 31243f4 3164d5a 31243f4 3164d5a e80aab9 31243f4 7d65c66 3164d5a 31243f4 3164d5a 31243f4 3164d5a e80aab9 3164d5a 31243f4 3164d5a e80aab9 7d65c66 e80aab9 3164d5a 31243f4 e80aab9 3c4371f e80aab9 3164d5a 31243f4 3164d5a e80aab9 3c4371f e80aab9 3c4371f 3164d5a 7d65c66 3164d5a 3c4371f 3164d5a 7d65c66 3164d5a e80aab9 3164d5a 0ee0419 e514fd7 3164d5a e514fd7 e80aab9 3164d5a e80aab9 3164d5a e80aab9 3164d5a e80aab9 3164d5a 46a7b3e e80aab9 3164d5a 3c4371f 3164d5a 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3164d5a 7d65c66 3164d5a 3c4371f 3164d5a 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import os
import gradio as gr
import requests
import inspect
import time
import pandas as pd
from smolagents import DuckDuckGoSearchTool
import threading
from typing import Dict, List, Optional, Tuple
import json
from huggingface_hub import InferenceClient
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Global Cache for Answers ---
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self, debug: bool = False):
self.search = DuckDuckGoSearchTool()
self.debug = debug
if self.debug:
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
if self.debug:
print(f"Agent received question: {question}")
# Early validation
if not question or not question.strip():
return "Please provide a valid question."
try:
time.sleep(1)
results = self.search(question)
# Use truthfulness check and early return
if not results:
return "No results found for that query."
# Direct access with get() method chaining
top = results[0]
title = top.get("title") or "No title"
snippet = top.get("snippet", "").strip()
link = top.get("link", "")
# Build answer more efficiently
parts = [f"**{title}**"]
if snippet:
parts.append(snippet)
if link:
parts.append(f"Source: {link}")
answer = "\n".join(parts)
except (IndexError, KeyError, AttributeError):
# More specific exception handling
answer = "Sorry, I couldn't process the search results properly."
except Exception as e:
answer = f"Sorry, I couldn't fetch results due to: {e}"
if self.debug:
print(f"Agent returning answer: {answer}")
return answer
def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
"""
Fetch questions from the API and cache them.
"""
global cached_questions
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty.", None
cached_questions = questions_data
# Create DataFrame for display
display_data = []
for item in questions_data:
display_data.append({
"Task ID": item.get("task_id", "Unknown"),
"Question": item.get("question", "")
})
df = pd.DataFrame(display_data)
status_msg = f"Successfully fetched {len(questions_data)} questions. Ready to generate answers."
return status_msg, df
except requests.exceptions.RequestException as e:
return f"Error fetching questions: {e}", None
except Exception as e:
return f"An unexpected error occurred: {e}", None
def generate_answers_async(progress_callback=None):
"""
Generate answers for all cached questions asynchronously.
"""
global cached_answers, processing_status
if not cached_questions:
return "No questions available. Please fetch questions first."
processing_status["is_processing"] = True
processing_status["progress"] = 0
processing_status["total"] = len(cached_questions)
try:
agent = BasicAgent()
cached_answers = {}
for i, item in enumerate(cached_questions):
if not processing_status["is_processing"]: # Check if cancelled
break
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
answer = agent(question_text)
cached_answers[task_id] = {
"question": question_text,
"answer": answer
}
except Exception as e:
cached_answers[task_id] = {
"question": question_text,
"answer": f"AGENT ERROR: {e}"
}
processing_status["progress"] = i + 1
if progress_callback:
progress_callback(i + 1, len(cached_questions))
except Exception as e:
print(f"Error in generate_answers_async: {e}")
finally:
processing_status["is_processing"] = False
def start_answer_generation():
"""
Start the answer generation process in a separate thread.
"""
if processing_status["is_processing"]:
return "Answer generation is already in progress.", None
if not cached_questions:
return "No questions available. Please fetch questions first.", None
# Start generation in background thread
thread = threading.Thread(target=generate_answers_async)
thread.daemon = True
thread.start()
return "Answer generation started. Check progress below.", None
def get_generation_progress():
"""
Get the current progress of answer generation.
"""
if not processing_status["is_processing"] and processing_status["progress"] == 0:
return "Not started", None
if processing_status["is_processing"]:
progress = processing_status["progress"]
total = processing_status["total"]
status_msg = f"Generating answers... {progress}/{total} completed"
return status_msg, None
else:
# Generation completed
if cached_answers:
# Create DataFrame with results
display_data = []
for task_id, data in cached_answers.items():
display_data.append({
"Task ID": task_id,
"Question": data["question"][:100] + "..." if len(data["question"]) > 100 else data["question"],
"Generated Answer": data["answer"][:200] + "..." if len(data["answer"]) > 200 else data["answer"]
})
df = pd.DataFrame(display_data)
status_msg = f"Answer generation completed! {len(cached_answers)} answers ready for submission."
return status_msg, df
else:
return "Answer generation completed but no answers were generated.", None
def submit_cached_answers(profile: gr.OAuthProfile | None):
"""
Submit the cached answers to the evaluation API.
"""
global cached_answers
if not profile:
return "Please log in to Hugging Face first.", None
if not cached_answers:
return "No cached answers available. Please generate answers first.", None
username = profile.username
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
# Prepare submission payload
answers_payload = []
for task_id, data in cached_answers.items():
answers_payload.append({
"task_id": task_id,
"submitted_answer": data["answer"]
})
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
# Submit to API
api_url = DEFAULT_API_URL
submit_url = f"{api_url}/submit"
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
# Create results DataFrame
results_log = []
for task_id, data in cached_answers.items():
results_log.append({
"Task ID": task_id,
"Question": data["question"],
"Submitted Answer": data["answer"]
})
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except:
error_detail += f" Response: {e.response.text[:500]}"
return f"Submission Failed: {error_detail}", None
except requests.exceptions.Timeout:
return "Submission Failed: The request timed out.", None
except Exception as e:
return f"Submission Failed: {e}", None
def clear_cache():
"""
Clear all cached data.
"""
global cached_answers, cached_questions, processing_status
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}
return "Cache cleared successfully.", None
# --- Enhanced Gradio Interface ---
with gr.Blocks(title="Enhanced Agent Evaluation Runner") as demo:
gr.Markdown("# Enhanced Agent Evaluation Runner with Answer Caching")
gr.Markdown(
"""
**Enhanced Instructions:**
1. **Clone and Modify**: Clone this space and modify the agent logic as needed.
2. **Login**: Log in to your Hugging Face account.
3. **Fetch Questions**: Load all questions from the evaluation API.
4. **Generate Answers**: Create answers for all questions (runs in background).
5. **Review Results**: Check the generated answers before submission.
6. **Submit**: Submit your answers when ready.
**Benefits of this approach:**
- ✅ Faster user feedback (separate steps)
- ✅ Ability to review answers before submission
- ✅ Progress tracking during answer generation
- ✅ Cache management for multiple runs
---
"""
)
with gr.Row():
gr.LoginButton()
clear_btn = gr.Button("Clear Cache", variant="secondary")
with gr.Tab("Step 1: Fetch Questions"):
gr.Markdown("### Fetch Questions from API")
fetch_btn = gr.Button("Fetch Questions", variant="primary")
fetch_status = gr.Textbox(label="Fetch Status", lines=2, interactive=False)
questions_table = gr.DataFrame(label="Available Questions", wrap=True)
fetch_btn.click(
fn=fetch_questions,
outputs=[fetch_status, questions_table]
)
with gr.Tab("Step 2: Generate Answers"):
gr.Markdown("### Generate Answers (Background Processing)")
with gr.Row():
generate_btn = gr.Button("Start Answer Generation", variant="primary")
refresh_btn = gr.Button("Refresh Progress", variant="secondary")
generation_status = gr.Textbox(label="Generation Status", lines=2, interactive=False)
answers_preview = gr.DataFrame(label="Generated Answers Preview", wrap=True)
generate_btn.click(
fn=start_answer_generation,
outputs=[generation_status, answers_preview]
)
refresh_btn.click(
fn=get_generation_progress,
outputs=[generation_status, answers_preview]
)
with gr.Tab("Step 3: Submit Results"):
gr.Markdown("### Submit Generated Answers")
submit_btn = gr.Button("Submit Cached Answers", variant="primary")
submission_status = gr.Textbox(label="Submission Status", lines=5, interactive=False)
final_results = gr.DataFrame(label="Final Submission Results", wrap=True)
submit_btn.click(
fn=submit_cached_answers,
outputs=[submission_status, final_results]
)
# Clear cache functionality
clear_btn.click(
fn=clear_cache,
outputs=[fetch_status, questions_table]
)
# Auto-refresh progress every 5 seconds when generation is active
demo.load(
fn=get_generation_progress,
outputs=[generation_status, answers_preview]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " Enhanced App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" Enhanced App Starting ")) + "\n")
print("Launching Enhanced Gradio Interface...")
demo.launch(debug=True, share=False) |