Upload finetune1.py
Browse files- finetune1.py +115 -0
finetune1.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
4 |
+
from datasets import Dataset
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
import requests
|
7 |
+
from io import BytesIO
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# Load the dataset
|
11 |
+
@st.cache_data
|
12 |
+
def load_data():
|
13 |
+
url = "https://huggingface.co/datasets/HUPD/hupd/resolve/main/hupd_metadata_2022-02-22.feather"
|
14 |
+
response = requests.get(url)
|
15 |
+
data = BytesIO(response.content)
|
16 |
+
df = pd.read_feather(data)
|
17 |
+
return df
|
18 |
+
|
19 |
+
# Tokenizer and model loading
|
20 |
+
@st.cache_resource
|
21 |
+
def load_tokenizer_and_model(model_name):
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # Adjust num_labels as needed
|
24 |
+
return tokenizer, model
|
25 |
+
|
26 |
+
# Tokenize and prepare the dataset
|
27 |
+
def prepare_data(df, tokenizer):
|
28 |
+
df['filing_date'] = pd.to_datetime(df['filing_date'])
|
29 |
+
jan_2016_df = df[df['filing_date'].dt.to_period('M') == '2016-01']
|
30 |
+
|
31 |
+
texts = jan_2016_df['invention_title'].tolist()
|
32 |
+
labels = jan_2016_df['patent_number'].tolist()
|
33 |
+
|
34 |
+
def tokenize_function(texts):
|
35 |
+
return tokenizer(texts, padding="max_length", truncation=True, return_tensors="pt", max_length=512)
|
36 |
+
|
37 |
+
tokenized_data = tokenize_function(texts)
|
38 |
+
|
39 |
+
dataset_dict = {
|
40 |
+
'input_ids': [x.tolist() for x in tokenized_data['input_ids']],
|
41 |
+
'attention_mask': [x.tolist() for x in tokenized_data['attention_mask']],
|
42 |
+
'labels': labels
|
43 |
+
}
|
44 |
+
|
45 |
+
dataset = Dataset.from_dict(dataset_dict)
|
46 |
+
|
47 |
+
return dataset
|
48 |
+
|
49 |
+
# Define Streamlit app
|
50 |
+
def main():
|
51 |
+
st.title("Patent Classification with Fine-Tuned BERT")
|
52 |
+
|
53 |
+
# Load data
|
54 |
+
df = load_data()
|
55 |
+
|
56 |
+
# Show sample data
|
57 |
+
st.subheader("Some Data from January 2016")
|
58 |
+
st.write(df.head())
|
59 |
+
|
60 |
+
# Load tokenizer and model
|
61 |
+
model_name = "bert-base-uncased"
|
62 |
+
tokenizer, model = load_tokenizer_and_model(model_name)
|
63 |
+
|
64 |
+
# Prepare data
|
65 |
+
dataset = prepare_data(df, tokenizer)
|
66 |
+
|
67 |
+
# Split the dataset
|
68 |
+
train_data, eval_data = train_test_split(list(zip(dataset['input_ids'], dataset['attention_mask'], dataset['labels'])), test_size=0.2, random_state=42)
|
69 |
+
|
70 |
+
train_dataset = Dataset.from_dict({
|
71 |
+
'input_ids': [item[0] for item in train_data],
|
72 |
+
'attention_mask': [item[1] for item in train_data],
|
73 |
+
'labels': [item[2] for item in train_data]
|
74 |
+
})
|
75 |
+
|
76 |
+
eval_dataset = Dataset.from_dict({
|
77 |
+
'input_ids': [item[0] for item in eval_data],
|
78 |
+
'attention_mask': [item[1] for item in eval_data],
|
79 |
+
'labels': [item[2] for item in eval_data]
|
80 |
+
})
|
81 |
+
|
82 |
+
# Fine-tune model
|
83 |
+
training_args = TrainingArguments(
|
84 |
+
output_dir='./results',
|
85 |
+
evaluation_strategy="epoch",
|
86 |
+
learning_rate=2e-5,
|
87 |
+
per_device_train_batch_size=8,
|
88 |
+
per_device_eval_batch_size=8,
|
89 |
+
num_train_epochs=3,
|
90 |
+
weight_decay=0.01,
|
91 |
+
)
|
92 |
+
|
93 |
+
trainer = Trainer(
|
94 |
+
model=model,
|
95 |
+
args=training_args,
|
96 |
+
train_dataset=train_dataset,
|
97 |
+
eval_dataset=eval_dataset,
|
98 |
+
tokenizer=tokenizer # Ensure tokenizer is passed
|
99 |
+
)
|
100 |
+
|
101 |
+
st.subheader("Training the Model")
|
102 |
+
if st.button('Train Model'):
|
103 |
+
with st.spinner('Training in progress...'):
|
104 |
+
trainer.train()
|
105 |
+
model.save_pretrained("./finetuned_model")
|
106 |
+
tokenizer.save_pretrained("./finetuned_model")
|
107 |
+
st.success("Model training complete and saved.")
|
108 |
+
|
109 |
+
# Display pretrained model data
|
110 |
+
st.subheader("Pretrained Model")
|
111 |
+
if st.button('Show Pretrained Model'):
|
112 |
+
st.write("Pretrained model is `bert-base-uncased`. Fine-tuned model is saved at './finetuned_model'.")
|
113 |
+
|
114 |
+
if __name__ == "__main__":
|
115 |
+
main()
|