File size: 5,489 Bytes
1c5a2f2
96cdb5a
1c5a2f2
96cdb5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee5f145
96cdb5a
ee5f145
96cdb5a
 
 
 
 
 
 
ee5f145
 
 
96cdb5a
ee5f145
 
 
 
 
 
 
96cdb5a
 
 
 
7ea55f9
96cdb5a
 
7ea55f9
96cdb5a
 
 
 
 
 
 
 
 
ee5f145
96cdb5a
 
 
 
 
1c5a2f2
 
 
96cdb5a
 
 
1c5a2f2
 
96cdb5a
 
7ea55f9
eafaf25
1c5a2f2
ee5f145
 
7ea55f9
1c5a2f2
7ea55f9
 
96cdb5a
 
 
 
 
 
 
 
 
 
 
 
 
1c5a2f2
 
 
 
 
 
 
 
 
96cdb5a
 
1c5a2f2
96cdb5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c5a2f2
 
96cdb5a
 
 
 
 
1c5a2f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96cdb5a
 
eafaf25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import pandas as pd
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import Dataset
from sklearn.model_selection import train_test_split
import requests
from io import BytesIO

# Load the dataset
@st.cache_data
def load_data():
    url = "https://huggingface.co/datasets/HUPD/hupd/resolve/main/hupd_metadata_2022-02-22.feather"
    response = requests.get(url)
    data = BytesIO(response.content)
    df = pd.read_feather(data)
    return df

# Tokenizer and model loading
def load_tokenizer_and_model(model_name, num_labels):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
    return tokenizer, model

# Tokenize and prepare the dataset
def prepare_data(df, tokenizer):
    df['filing_date'] = pd.to_datetime(df['filing_date'])
    jan_2016_df = df[df['filing_date'].dt.to_period('M') == '2016-01']
    
    # Get only 5 unique labels
    unique_labels = jan_2016_df['patent_number'].astype('category').cat.categories[:5]
    jan_2016_df = jan_2016_df[jan_2016_df['patent_number'].isin(unique_labels)]
    
    # Re-map labels to integers starting from 0
    label_mapping = {label: idx for idx, label in enumerate(unique_labels)}
    jan_2016_df['label'] = jan_2016_df['patent_number'].map(label_mapping)

    texts = jan_2016_df['invention_title'].tolist()
    labels = jan_2016_df['label'].tolist()
    num_labels = len(unique_labels)

    # Define tokenization function
    def tokenize_function(texts):
        return tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)

    # Tokenize texts
    tokenized_data = tokenize_function(texts)

    # Create dataset
    dataset_dict = {
        'input_ids': [x.tolist() for x in tokenized_data['input_ids']],
        'attention_mask': [x.tolist() for x in tokenized_data['attention_mask']],
        'labels': labels
    }
    
    dataset = Dataset.from_dict(dataset_dict)
    
    return dataset, num_labels

# Define Streamlit app
def main():
    st.title("Patent Classification with Fine-Tuned BERT")
    
    # Initialize model directory path
    model_dir = './finetuned_model'
    
    # Load data
    df = load_data()
    
    # Show data
    st.subheader("Data from January 2016")
    st.write(df.head())
    
    # Prepare data
    model_name = "bert-base-uncased"
    tokenizer, model = load_tokenizer_and_model(model_name, num_labels=5)
    dataset, num_labels = prepare_data(df, tokenizer)
    
    # Update the model with the correct number of labels based on the data
    if num_labels != 5:
        model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
    
    # Split the dataset
    train_data, eval_data = train_test_split(list(zip(dataset['input_ids'], dataset['attention_mask'], dataset['labels'])), test_size=0.2, random_state=42)
    
    def create_dataset(data):
        return Dataset.from_dict({
            'input_ids': [item[0] for item in data],
            'attention_mask': [item[1] for item in data],
            'labels': [item[2] for item in data]
        })

    train_dataset = create_dataset(train_data)
    eval_dataset = create_dataset(eval_data)
    
    # Show training data
    st.subheader("Training Data")
    train_df = pd.DataFrame({
        'input_ids': [ids[:10] for ids in train_dataset['input_ids'][:5]], 
        'attention_mask': [mask[:10] for mask in train_dataset['attention_mask'][:5]],
        'labels': train_dataset['labels'][:5]
    })
    st.write(train_df)

    # Fine-tune model
    training_args = TrainingArguments(
        output_dir=model_dir,
        evaluation_strategy="epoch",
        learning_rate=2e-5,
        per_device_train_batch_size=8,
        per_device_eval_batch_size=8,
        num_train_epochs=3,
        weight_decay=0.01,
    )
    
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        tokenizer=tokenizer
    )
    
    st.subheader("Training the Model")
    if st.button('Train Model'):
        with st.spinner('Training in progress...'):
            trainer.train()
            model.save_pretrained(model_dir)
            tokenizer.save_pretrained(model_dir)
            st.success("Model training complete and saved.")
    
    # Display pretrained model data
    st.subheader("Pretrained Model")
    if st.button('Show Pretrained Model'):
        if os.path.exists(model_dir):
            # Show model name
            st.write(f"Model name: `{model_name}`")
            
            # List .json files
            json_files = [f for f in os.listdir(model_dir) if f.endswith('.json')]
            if json_files:
                st.write("Available `.json` files:")
                for file in json_files:
                    file_path = os.path.join(model_dir, file)
                    with open(file_path, 'r', encoding='utf-8') as f:
                        file_content = f.read()
                    st.write(f"[{file}](data:file/{file})")  # Create clickable link
                    st.text(file_content)  # Display file content
            else:
                st.write("No `.json` files found in `./finetuned_model` directory.")
        else:
            st.write("Directory `./finetuned_model` does not exist.")

if __name__ == "__main__":
    main()