taesiri's picture
backup
defdeae
raw
history blame
8.01 kB
import os
import gradio as gr
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor
from peft import PeftModel
from huggingface_hub import login
import json
import matplotlib.pyplot as plt
import io
import base64
def check_environment():
required_vars = ["HF_TOKEN"]
missing_vars = [var for var in required_vars if var not in os.environ]
if missing_vars:
raise ValueError(
f"Missing required environment variables: {', '.join(missing_vars)}\n"
"Please set the HF_TOKEN environment variable with your Hugging Face token"
)
# # Login to Hugging Face
# check_environment()
# login(token=os.environ["HF_TOKEN"], add_to_git_credential=True)
# Load model and processor (do this outside the inference function to avoid reloading)
# base_model_path = (
# "taesiri/BugsBunny-LLama-3.2-11B-Vision-BaseCaptioner-Medium-FullModel"
# )
# processor = AutoProcessor.from_pretrained(base_model_path)
# model = MllamaForConditionalGeneration.from_pretrained(
# base_model_path,
# torch_dtype=torch.bfloat16,
# device_map="cuda",
# cache_dir="./",
# )
# #
# odel = PeftModel.from_pretrained(model, lora_weights_path)
from transformers import MllamaForConditionalGeneration, AutoProcessor
import torch
local_model_path = "../merged-llama-3.2-dummy"
# Load model and processor (do this outside the inference function to avoid reloading)
base_model_path = (
local_model_path
)
# lora_weights_path = "taesiri/BugsBunny-LLama-3.2-11B-Vision-Base-Medium-LoRA"
processor = AutoProcessor.from_pretrained(base_model_path)
model = MllamaForConditionalGeneration.from_pretrained(
base_model_path,
torch_dtype=torch.bfloat16,
device_map="cuda",
cache_dir="./"
)
model.tie_weights()
def create_color_palette_image(colors):
if not colors or not isinstance(colors, list):
return None
try:
# Validate color format
for color in colors:
if not isinstance(color, str) or not color.startswith("#"):
return None
# Create figure and axis
fig, ax = plt.subplots(figsize=(10, 2))
# Create rectangles for each color
for i, color in enumerate(colors):
ax.add_patch(plt.Rectangle((i, 0), 1, 1, facecolor=color))
# Set the view limits and aspect ratio
ax.set_xlim(0, len(colors))
ax.set_ylim(0, 1)
ax.set_xticks([])
ax.set_yticks([])
return fig # Return the matplotlib figure directly
except Exception as e:
print(f"Error creating color palette: {e}")
return None
def inference(image):
if image is None:
return ["Please provide an image"] * 4
if not isinstance(image, Image.Image):
try:
image = Image.fromarray(image)
except Exception as e:
print(f"Image conversion error: {e}")
return ["Invalid image format"] * 4
# Prepare input
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "Analyze this image for fire, smoke, haze, or other related conditions."},
],
}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
try:
# Move inputs to the correct device
inputs = processor(
image, input_text, add_special_tokens=False, return_tensors="pt"
).to(model.device)
# Clear CUDA cache after inference
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=2048)
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception as e:
print(f"Inference error: {e}")
return ["Error during inference"] * 4
# Decode output
result = processor.decode(output[0], skip_special_tokens=True)
print("DEBUG: Full decoded output:", result)
try:
json_str = result.strip().split("assistant\n")[1].strip()
parsed_json = json.loads(json_str)
# Create specific JSON subsets for each section
fire_analysis = {
"predictions": parsed_json.get("predictions", "N/A"),
"description": parsed_json.get("description", "No description available"),
"confidence_scores": parsed_json.get("confidence_score", {})
}
environment_analysis = {
"environmental_factors": parsed_json.get("environmental_factors", {})
}
detection_analysis = {
"detections": parsed_json.get("detections", []),
"detection_count": len(parsed_json.get("detections", []))
}
report_analysis = {
"uncertainty_factors": parsed_json.get("uncertainty_factors", []),
"false_positive_indicators": parsed_json.get("false_positive_indicators", [])
}
return (
json.dumps(fire_analysis, indent=2),
json.dumps(environment_analysis, indent=2),
json.dumps(detection_analysis, indent=2),
json.dumps(report_analysis, indent=2),
json_str,
"",
"Analysis complete",
parsed_json
)
except Exception as e:
print("DEBUG: Error processing response:", e)
return (
"Error processing response",
"",
"",
"",
str(result),
str(e),
"Error",
{}
)
# Update Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Fire Detection Demo")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
type="pil",
label="Upload Image",
elem_id="large-image",
)
submit_btn = gr.Button("Analyze Image", variant="primary")
# Add examples here
gr.Examples(
examples=[
"examples/Birch MWF014-0001.png",
"examples/Birch MWF014-0006.png",
"examples/Blackstone PB-0010.png",
],
inputs=image_input,
label="Example Images",
examples_per_page=4
)
with gr.Tabs() as tabs:
with gr.Tab("Analysis Results"):
with gr.Row():
with gr.Column():
fire_output = gr.JSON(
label="Fire Details",
lines=4,
)
with gr.Column():
environment_output = gr.JSON(
label="Environment Details",
lines=4,
)
with gr.Row():
with gr.Column():
detection_output = gr.JSON(
label="Detection Details",
lines=4,
)
with gr.Column():
report_output = gr.JSON(
label="Report Details",
lines=4,
)
with gr.Tab("JSON Output", id=0):
json_output = gr.JSON(
label="Detailed JSON Results",
)
with gr.Tab("Raw Output"):
raw_output = gr.Textbox(
label="Raw JSON Response",
lines=10,
)
error_box = gr.Textbox(label="Error Messages", visible=False)
status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
submit_btn.click(
fn=inference,
inputs=[image_input],
outputs=[
fire_output,
environment_output,
detection_output,
report_output,
raw_output,
error_box,
status_text,
json_output,
],
)
demo.launch(share=True)