import os import torch from PIL import Image import numpy as np from PIL import Image from lavis.models import load_model_and_preprocess import gradio as gr device = torch.device("cuda") if torch.cuda.is_available() else "cpu" model, vis_processors, _ = load_model_and_preprocess( name="blip2_opt", model_type="pretrain_opt2.7b", is_eval=True, device=device ) def answer_question(image, prompt): image = vis_processors["eval"](image).unsqueeze(0).to(device) response = model.generate({"image": image, "prompt": f"Question: {prompt} Answer:"}) response = '\n'.join(response) return response def generate_caption(image, caption_type): image = vis_processors["eval"](image).unsqueeze(0).to(device) if caption_type == "Beam Search": caption = model.generate({"image": image}) else: caption = model.generate({"image": image}, use_nucleus_sampling=True, num_captions=3) caption = '\n'.join(caption) return caption with gr.Blocks() as demo: gr.Markdown("## BLIP-2 Demo") gr.Markdown("Using `OPT2.7B` - [Github](https://github.com/salesforce/LAVIS/tree/main/projects/blip2) - [Paper](https://arxiv.org/abs/2301.12597)") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Image", type="pil") caption_type = gr.Radio(["Beam Search", "Nucleus Sampling"], label="Caption Type", value="Beam Search") btn_caption = gr.Button("Generate Caption") question_txt = gr.Textbox(label="Question", lines=1) btn_answer = gr.Button("Generate Answer") with gr.Column(): output_text = gr.Textbox(label="Answer", lines=5) btn_caption.click(generate_caption, inputs=[input_image, caption_type], outputs=[output_text]) btn_answer.click(answer_question, inputs=[input_image, question_txt], outputs=[output_text]) gr.Examples([['./merlion.png', 'Beam Search', 'which city is this?']], inputs=[input_image, caption_type, question_txt]) demo.launch()