import os import gradio as gr import warnings import json from dotenv import load_dotenv from typing import List import time from functools import lru_cache import logging from langchain_community.vectorstores import FAISS from langchain_community.embeddings import AzureOpenAIEmbeddings from openai import AzureOpenAI # Patch Gradio bug import gradio_client.utils gradio_client.utils.json_schema_to_python_type = lambda schema, defs=None: "string" # Load environment variables load_dotenv() AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY") AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT") AZURE_OPENAI_LLM_DEPLOYMENT = os.getenv("AZURE_OPENAI_LLM_DEPLOYMENT") AZURE_OPENAI_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT") if not all([AZURE_OPENAI_API_KEY, AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_LLM_DEPLOYMENT, AZURE_OPENAI_EMBEDDING_DEPLOYMENT]): raise ValueError("Missing one or more Azure OpenAI environment variables.") warnings.filterwarnings("ignore") # Embeddings embeddings = AzureOpenAIEmbeddings( azure_deployment=AZURE_OPENAI_EMBEDDING_DEPLOYMENT, azure_endpoint=AZURE_OPENAI_ENDPOINT, openai_api_key=AZURE_OPENAI_API_KEY, openai_api_version="2025-01-01-preview", chunk_size=1000 ) # Vectorstore SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) FAISS_INDEX_PATH = os.path.join(SCRIPT_DIR, "faiss_index_sysml") vectorstore = FAISS.load_local(FAISS_INDEX_PATH, embeddings, allow_dangerous_deserialization=True) # OpenAI client client = AzureOpenAI( api_key=AZURE_OPENAI_API_KEY, api_version="2025-01-01-preview", azure_endpoint=AZURE_OPENAI_ENDPOINT ) # Logger logger = logging.getLogger(__name__) # SysML retriever function @lru_cache(maxsize=100) def sysml_retriever(query: str) -> str: try: results = vectorstore.similarity_search(query, k=100) contexts = [doc.page_content for doc in results] return "\n\n".join(contexts) except Exception as e: logger.error(f"Retrieval error: {str(e)}") return "Unable to retrieve information at this time." # Dummy functions def dummy_weather_lookup(location: str = "London") -> str: return f"The weather in {location} is sunny and 25°C." def dummy_time_lookup(timezone: str = "UTC") -> str: return f"The current time in {timezone} is 3:00 PM." # Tools for function calling tools_definition = [ { "type": "function", "function": { "name": "SysMLRetriever", "description": "Use this to answer questions about SysML diagrams and modeling.", "parameters": { "type": "object", "properties": { "query": {"type": "string", "description": "The search query to find information about SysML"} }, "required": ["query"] } } }, { "type": "function", "function": { "name": "WeatherLookup", "description": "Use this to look up the current weather in a specified location.", "parameters": { "type": "object", "properties": { "location": {"type": "string", "description": "The location to look up the weather for"} }, "required": ["location"] } } }, { "type": "function", "function": { "name": "TimeLookup", "description": "Use this to look up the current time in a specified timezone.", "parameters": { "type": "object", "properties": { "timezone": {"type": "string", "description": "The timezone to look up the current time for"} }, "required": ["timezone"] } } } ] # Tool execution mapping tool_mapping = { "SysMLRetriever": sysml_retriever, "WeatherLookup": dummy_weather_lookup, "TimeLookup": dummy_time_lookup } # Convert chat history def convert_history_to_messages(history): messages = [] for user, bot in history: messages.append({"role": "user", "content": user}) messages.append({"role": "assistant", "content": bot}) return messages # Chatbot logic def sysml_chatbot(message, history): chat_messages = convert_history_to_messages(history) full_messages = [ {"role": "system", "content": "You are a helpful SysML modeling assistant and also a capable smart Assistant"} ] + chat_messages + [{"role": "user", "content": message}] try: response = client.chat.completions.create( model=AZURE_OPENAI_LLM_DEPLOYMENT, messages=full_messages, tools=tools_definition, tool_choice={"type": "function", "function": {"name": "SysMLRetriever"}} ) assistant_message = response.choices[0].message if assistant_message.tool_calls: tool_call = assistant_message.tool_calls[0] function_name = tool_call.function.name function_args = json.loads(tool_call.function.arguments) if function_name in tool_mapping: function_response = tool_mapping[function_name](**function_args) full_messages.append({ "role": "assistant", "content": None, "tool_calls": [{ "id": tool_call.id, "type": "function", "function": { "name": function_name, "arguments": tool_call.function.arguments } }] }) full_messages.append({ "role": "tool", "tool_call_id": tool_call.id, "content": function_response }) second_response = client.chat.completions.create( model=AZURE_OPENAI_LLM_DEPLOYMENT, messages=full_messages ) answer = second_response.choices[0].message.content else: answer = f"I tried to use a function '{function_name}' that's not available." else: answer = assistant_message.content history.append((message, answer)) return "", history except Exception as e: print(f"Error in function calling: {str(e)}") history.append((message, "Sorry, something went wrong.")) return "", history # === Gradio UI === with gr.Blocks(css=""" #submit-btn { height: 100%; background-color: #48CAE4; color: white; font-size: 1.5em; } """) as demo: gr.Markdown("## SysModeler Chatbot") chatbot = gr.Chatbot(height=600) with gr.Row(): with gr.Column(scale=5): msg = gr.Textbox( placeholder="Ask me about SysML diagrams or concepts...", lines=3, show_label=False ) with gr.Column(scale=1, min_width=50): submit_btn = gr.Button("➤", elem_id="submit-btn") clear = gr.Button("Clear") state = gr.State([]) submit_btn.click(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot]) msg.submit(fn=sysml_chatbot, inputs=[msg, state], outputs=[msg, chatbot]) clear.click(fn=lambda: ([], ""), inputs=None, outputs=[chatbot, msg]) if __name__ == "__main__": demo.launch()